Beyond Word2Vec: Using embeddings to chart out the ebb and flow of tech skills

Maryam Jahanshahi Ph.D.

Research Scientist
TapRecruit.co

Skills and qualifications matter in job descriptions

Same title, Different job

- Required Experience
- Required Responsibility
- Preferred Skill
- Required Education

Research at TapRecruit

Helping companies make fairer and more efficient recruiting decisions

NLP and Data Science:

- What are distinguishing characteristics of successful career documents?
- What skills are increasingly important for different industries?

Decision Science:

- How do candidates make decisions about which jobs to apply to?
- How do hiring teams make decisions about candidate qualifications?

How have tech skills changed over time?

Strategies to identify changes among corpora

Traditional approaches do not capture syntactic and semantic shifts

Manual Feature Extraction

Require selection of key attributes, therefore difficult to discover new attributes

Dynamic Topic Models

Require experimentation with topic number

Embeddings use context to extract meaning

Window sizes capture semantic similarity vs semantic relatedness

Statistical modeling through software (e.g. SPSS) or programming language (e.g. **Python**)

Context

Word

Experience in **Python**, Java or other object-oriented programming languages

Context

Context

Proficiency programming in **Python**, Java or C++.

Context

Word

Context

A simplified representation of word vectors

Dimension reduction is key to all types of embeddings models

Embeddings capture entity relationships

Dimensionality enables comparison between word pairs along many axes

Hierarchies

Comparatives and Superlatives

Man :: King as Woman :: ?

Embeddings reflect cultural bias in corpora

High dimensionality enables some bias reduction

Man :: King as Woman :: ?

Man :: Programmer as Woman :: ?

Pretrained embeddings facilitate fast prototyping

Embeddings training should match corpus that is being tested on

Corpus Generation	Corpus	Twitter	Common Crawl	GoogleNews	Wikipedia
	Tokens	27 B	42-840 B	100 B	6 B
Corpus Processing	Vocabulary Size	1.2 M	1.9-2.2 M	3 M	400 k
Language Model	Algorithm	GLoVE	GLoVE	word2vec	GLoVE
Generation	Vector Length	25 - 200 d	300 d	300 d	50 - 300 d
Language Model Tuning Final Application					

Problems with pretrained embedding models

Casing	Abbreviations vs Words e.g. IT vs it
Out of Vocabulary Words	Domain Specific Words & Acronyms
Polysemy	Words with multiple meanings e.g. drive (a car) vs drive (results) e.g. Chef (the job) vs Chef (the language)
Multi-word Expressions	Phrases that have new meanings e.g. Front-end vs front + end

Custom language models tools

Modularized for different data and modeling requirements

Tokenization, POS tagging, Sentence Segmentation, Dependency Parsing

Language Modeling

Different word embedding models (GLoVE, word2vec, fastText)

Career language embedding model

Identified equal opportunity and perks language

Career language embedding model

Identified 'soft' skills and language around experience

I've got 300 dimensions... but time ain't one

Two approaches to connect embeddings

Kim, Chiu, Kaneki, Hedge and Petrov, <u>arXiv: 1405:3515</u>. Kulkarni, Al-Rfou, Perozzi and Skiena, <u>arXiv: 1411:3315</u>.

Data efficient
Does not require alignment

Balmer and Mandt, <u>arXiv: 1702:08359</u> Yao, Sun, Ding, Rao and Xiong, <u>arXiv: 1703:00607</u>

Rudolph and Blei, arXiv: 1703:08052

Dynamic Bernoulli embeddings

Outputs facilitate quick analysis of trends

Absolute drift

Identifies top words whose usage changes over time course

words with largest drift (Senate)			
IRAQ	3.09	coin	2.39
tax cuts	2.84	social security	2.38
health care	2.62	FINE	2.38
energy	2.55	signal	2.38
medicare	2.55	program	2.36
DISCIPLINE	2.44	moves	2.35
text	2.41	credit	2.34
VALUES	2.40	UNEMPLOYMENT	2.34

Embedding neighborhoods

Extract semantic changes by nearest neighbors of drifting words

	UNEMPLOYMENT	
1858	1940	2000
unemployment	unemployment	unemployment
unemployed	unemployed	jobless
depression	depression	rate
acute	alleviating	depression
deplorable	destitution	forecasts
alleviating	acute	crate
destitution	reemployment	upward
urban	deplorable	lag
employment	employment	economists
distressing	distress	predict

Experiments with dynamic embeddings

	Small Corpus
Job Types	All
Time Slices	3 (2016-2018)
Number of Documents	50 k
Vocabulary Size	10 k
Data Preprocessing	Basic
Embedding Dimensions	100 d

Small corpus identified MBAs and PhDs

Reduced requirement for advanced degrees in many jobs

Demand for MBAs is Falling

MBAs in All Jobs

MBAs in DS Jobs

MBAs in Tech Jobs

-35% -15% +30%

Demand for PhDs is Falling

PhDs in All Jobs

PhDs in DS Jobs

PhDs in ML Jobs

Small corpus identified skill demands

Data Viz is up and Hadoop (but not Spark) is down

Demand for Data Visualization tools is up

Demand for Hadoop is down in DS and ML roles

Blue boxes indicate phrases identified from top drifting words analysis. Grey and pink boxes indicate 'control' skills. tap Recruit.co

Battle of the Languages

Difference between supply vs demand of scripting languages

Demand for Perl is down

Perl

Python -40% Steady

Python, the fastest-growing major programming language, has risen in the ranks of programming languages in our survey yet again, edging out Java this year and standing as the second most loved language (behind Rust).

Battle of the Languages

Difference between supply vs demand of scripting languages

Demand for Python up in Tech roles

Python in Tech Jobs

Python in DS Jobs +30% Steady

Demand for Java is up

Java in Tech Jobs

Java in DS Jobs

Python, the fastest-growing major programming language, has risen in the ranks of programming languages in our survey yet again, edging out Java this year and standing as the second most loved language (behind Rust).

Blue boxes indicate phrases identified from top drifting words analysis. Grey and pink boxes indicate 'control' skills. tap Recruit.co

Experiments with dynamic embeddings

	Small Corpus	Large Corpus
Job Types	All	All
Time Slices	3 (2016-2018)	3 (2016-2018)
Number of Documents	50 k	500 k
Vocabulary Size	10 k	10 k
Data Preprocessing	Basic	Basic
Embedding Dimensions	100 d	100 d

SQL was a top drifting word

Large corpus identified role-type dependent shifts in requirements

Data Science & Tech Jobs

SQL requirement increases in specific functions

Beyond word2vec

- Flavors of static word embeddings: The Corpus Issue
- Considerations for developing custom embedding models
- Dynamic Bernoulli embeddings are robust with small datasets

How have tech and data science skills changed?

- Demand for MBAs and PhDs is falling
- Core Skills: DataViz & Scripting Languages
- Commodification of distributed systems impacts demand for Hadoop
- Demand for SQL in a variety of core business functions

Thank you Al Conference!

Maryam Jahanshahi Ph.D.

Research Scientist

37 @mjahanshahi

in maryam-j

