in Natural Language Processing to Analyze Text

Maryam Jahanshahi Ph.D. Research Scientist TapRecruit.co

tap Recruit.co

Applying Exponential Family Embeddings

http://bit.ly/domino-nyc

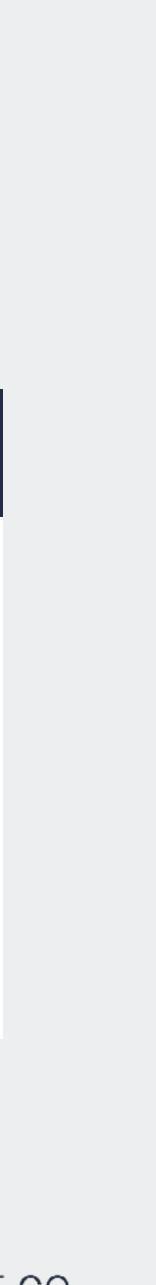
Research at TapRecruit Helping companies make better recruiting decisions

NLP and Data Science:

- What are distinguishing characteristics of successful career documents?
- What skills are increasingly important for different industries?

Decision Science:

- How do candidates make decisions about which jobs to apply to?
- How do hiring teams make decisions about candidate qualifications?



TapRecruit uses NLP to understand career content Converting unstructured documents into structured data

Smart Editor for JDs

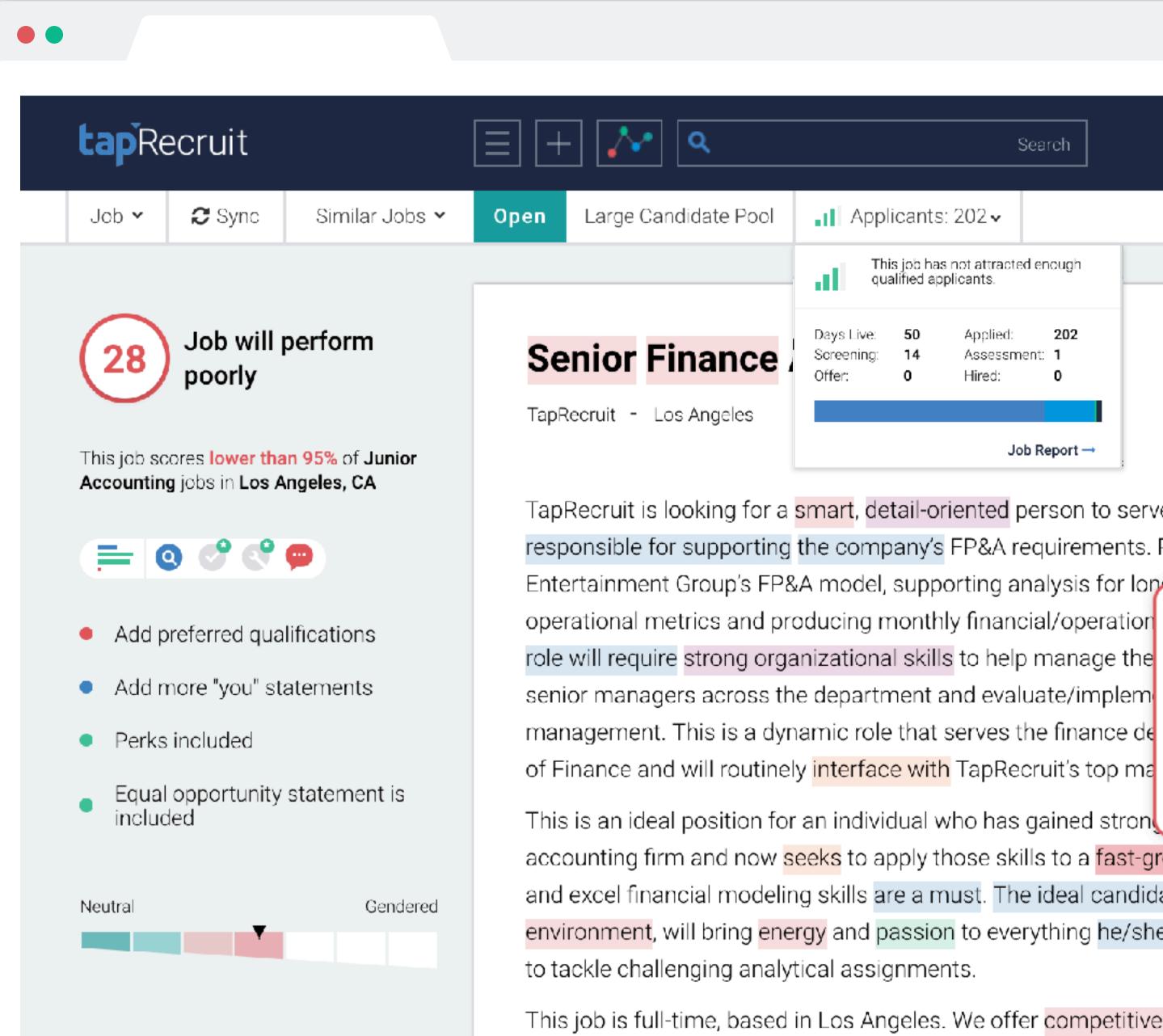
Data-driven suggestions on both the content and language use in job descriptions.

Pipeline Health Monitoring

Analytics dashboards to help diagnose quality and diversity issues in talent pipelines.

Salary Estimation

Data-driven salary estimates based on a job's requirements rather than just title and location.



			Search				Account 🗸	
Appl	icants	: 202 🗸			3850 Characters	Notify ~	Last edit: System ~	
This job has not attracted enough qualified applicants.			d enough					
ive: iing:	50 14 0	Applied: Assessm Hired:	202 ent: 1 0	\$76,300 BETA \$65,200 \$98,600				
		Jo	b Report →					
, <mark>detail-oriented</mark> person to serve as a senior financial analyst. This person will be								
mpany's FP&A requirements. Responsibilities will include working on TapRecruit								
del, supporting analysis for lon g term planging antione t racking <mark>key</mark> business								
a monthly financial/operation Language that itional EP&A needs, this								

Language that emphasizes an "intense" or "confusing" environment is known to deter qualified candidates.

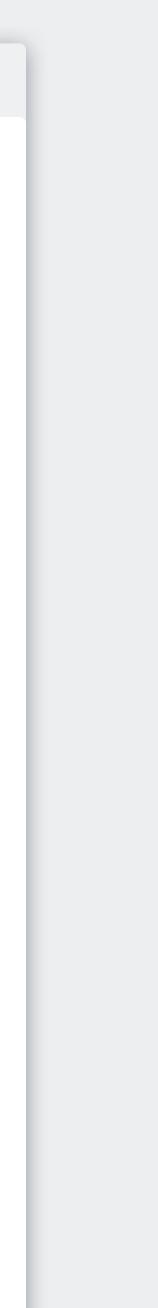
🎁 Delete

itional FP&A needs, this uide discussions with ojects for top report to a Senior Manager

investment bank or

accounting firm and now seeks to apply those skills to a fast-growing entrepreneurial company. Strong quantitative and excel financial modeling skills are a must. The ideal candidate must be comfortable in a dynamic start-up environment, will bring energy and passion to everything he/she does, and will not be afraid to roll up his/her sleeves

This job is full-time, based in Los Angeles. We offer competitive compensation and stock option program.



Language matters in job descriptions

Same title, Different job

Finance Manager Kraft Foods

Junior (3 Years)

No Managerial Experience

Different title, Same job

Performance Marketing Manager **PocketGems**

Mid-Level

Quantitative Focus

iBanking Expertise

Data Analysis Tools (SQL)

Consulting Experience Preferred

MBA Preferred

Roche

Senior (6-8 Years)

Division Level Controller

Strategic Finance Role

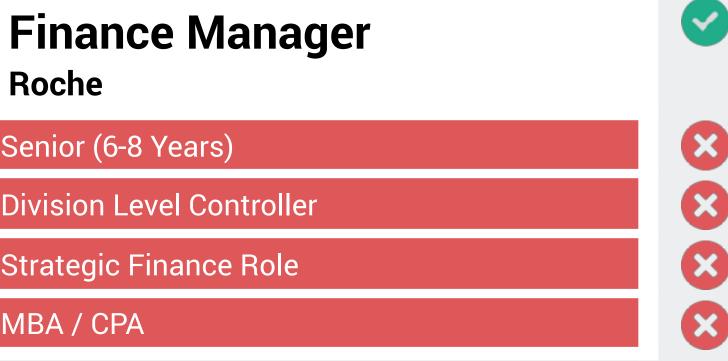
MBA / CPA

Senior Analyst, The Gap

Mid-Level

Quantitative Focus

Finance Expertise



Same Title

Required Experience Required Responsibility Preferred Skill Required Education

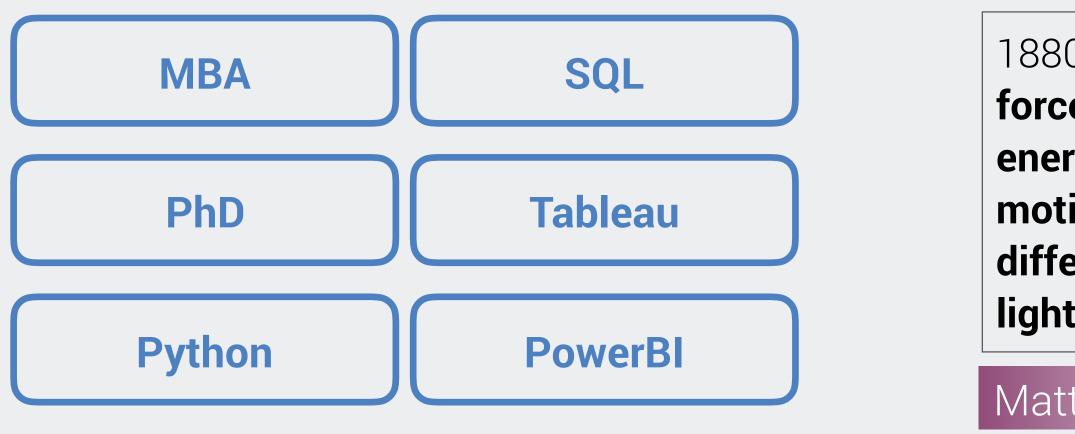
Customer Strategy

- Relational Database Experience **External Consulting Experience Preferred** BA in Accounting, Finance, MBA Preferred
- **Required Experience**
- **Required Skills**
- **Required Experience**
- **Required Skills**
- **Preferred Experience**
- **Preferred Education**

tap Recruit.co

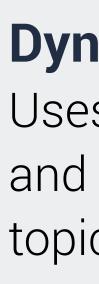
How have data science skills changed over time?

Strategies to identify changes among corpora Traditional approaches do not capture syntactic and semantic shifts



Manual Feature Extraction

Require *a priori* selection of key attributes, therefore difficult to discover new attributes



0 e rgy tion er t	1920 atom theory electron energy measure	1960 radiat energy electron measure ray	2000 state energy electron magnet field
ter			Quantum
		Electron	

Dynamic Topic Models

Uses a bag of words approach, and require experimentation with topic number

Adapted from Blei and Lafferty, ICML 2006.

Word embeddings capture semantic similarities

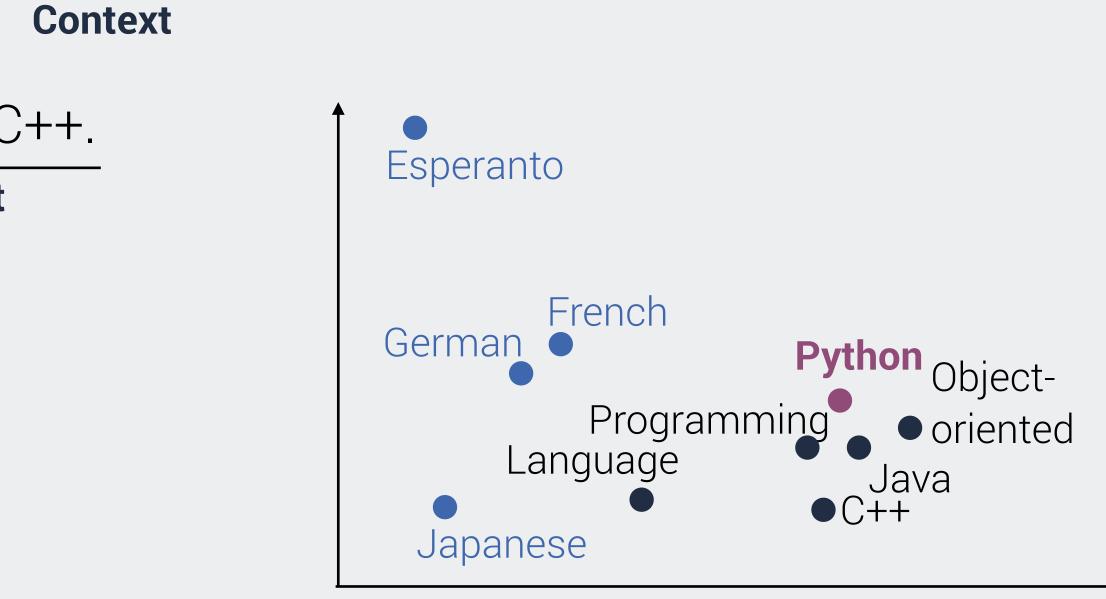
Statistical modeling through software (e.g. SPSS) or programming language (e.g. **Python**)

Context

Experience in **Python**, Java or other object-oriented programming languages

Word Context Proficiency programming in **Python**, Java or C++. Word Context Context

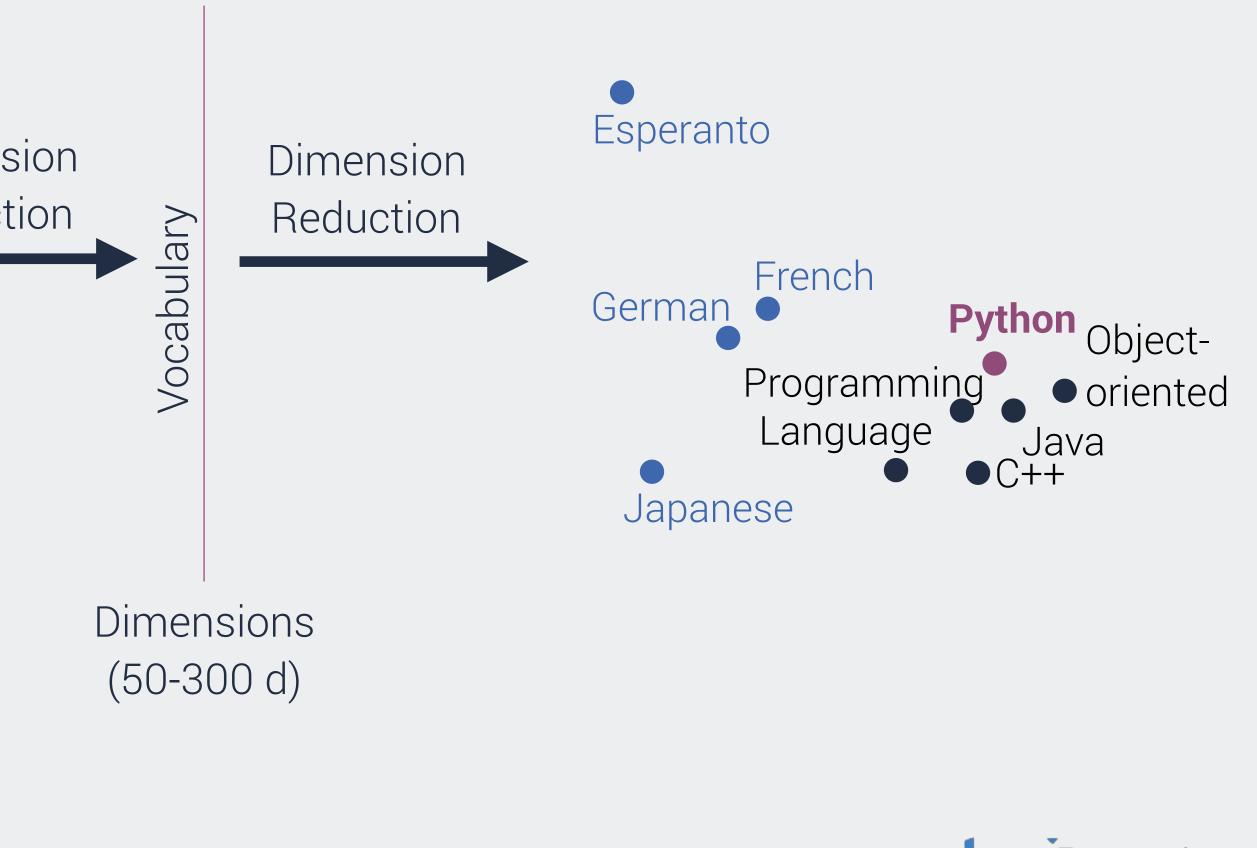
Word



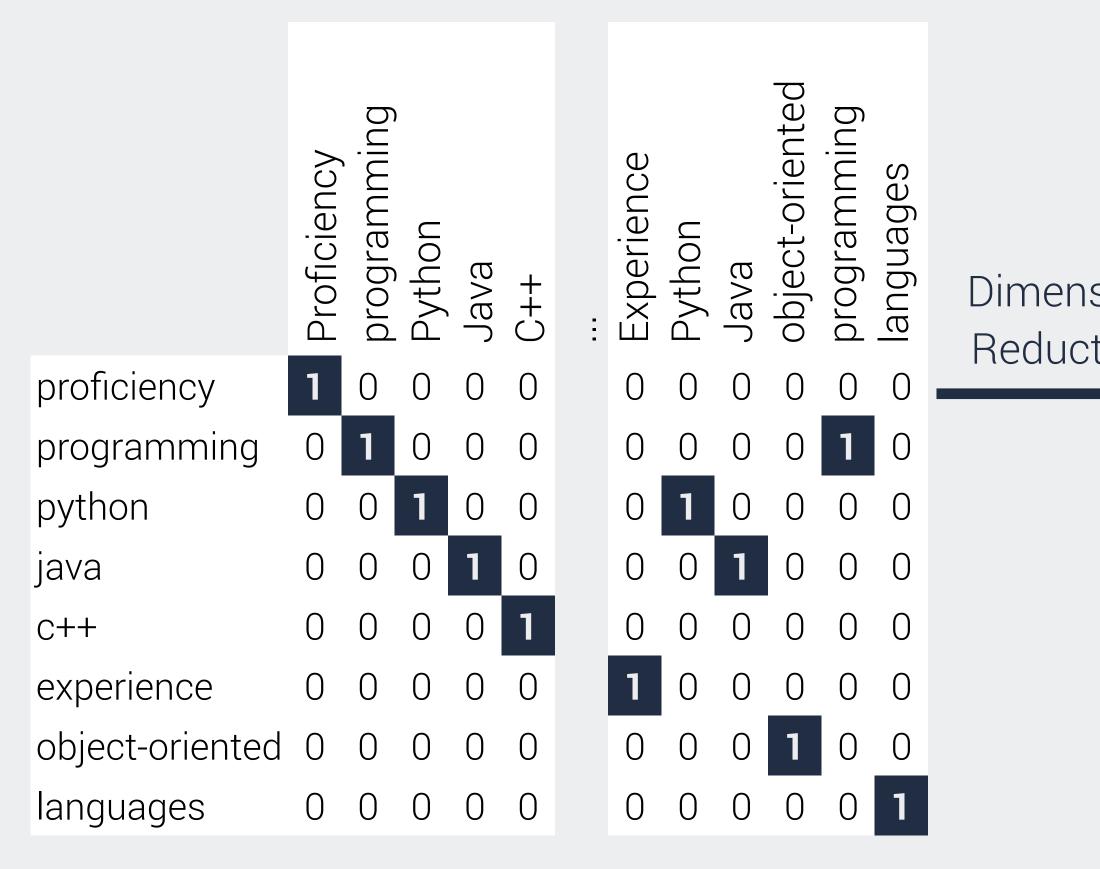
A simplified representation of word vectors

Dimension Reduction

Tokens in corpus (Millions or Billions)

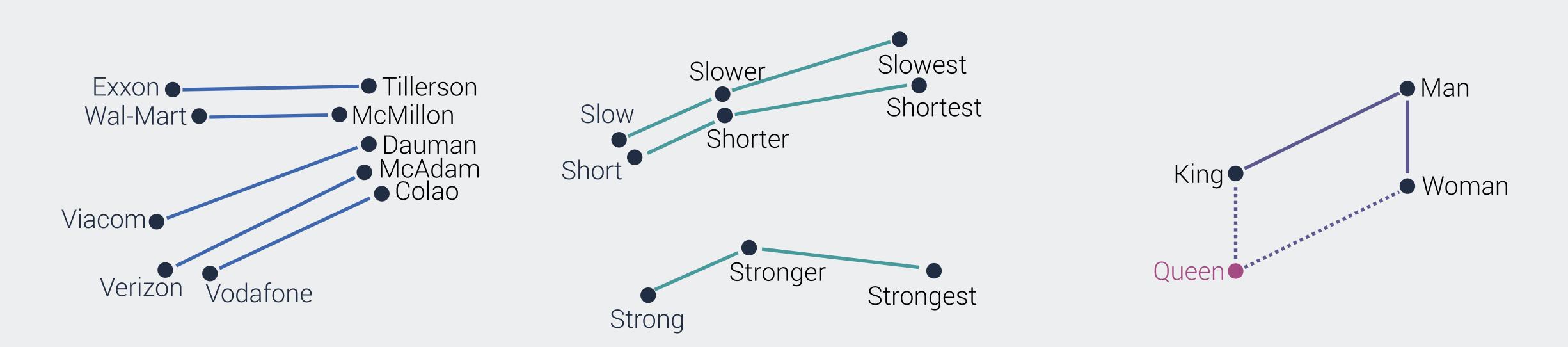


A simplified representation of word vectors



sion		qualification	data science	translation	:
tion	proficiency	0.8	0.1	0.3	
	programming	0.2	0.7	0.1	
	python	0.1	0.9	-0.2	
	java	-0.1	0.6	0.1	
	C++	-0.2	0.4	-0.1	
	experience	1.0	0.3	0.4	
	object-oriented	-0.3	0.3	-0.2	
	languages	0.4	0.1	0.9	

Embeddings capture entity relationships Dimensionality enables comparison between word pairs along many axes



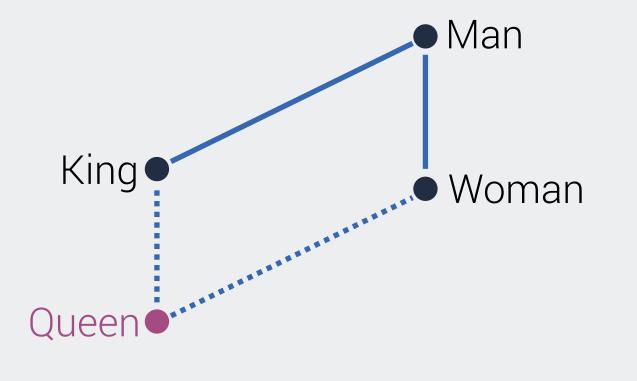
Hierarchies

Adapted from <u>Stanford NLP GLoVE Project</u>

Comparatives and Superlatives

Man :: King as Woman :: ?

Embeddings reflect cultural bias in corpora Dimensionality enables some bias reduction

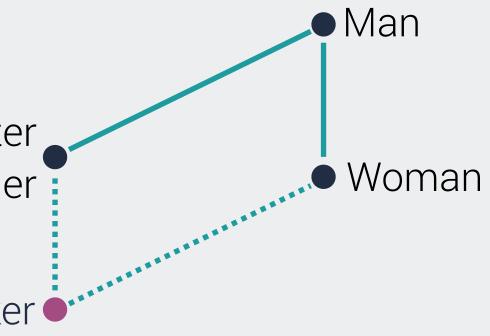


Computer Programmer

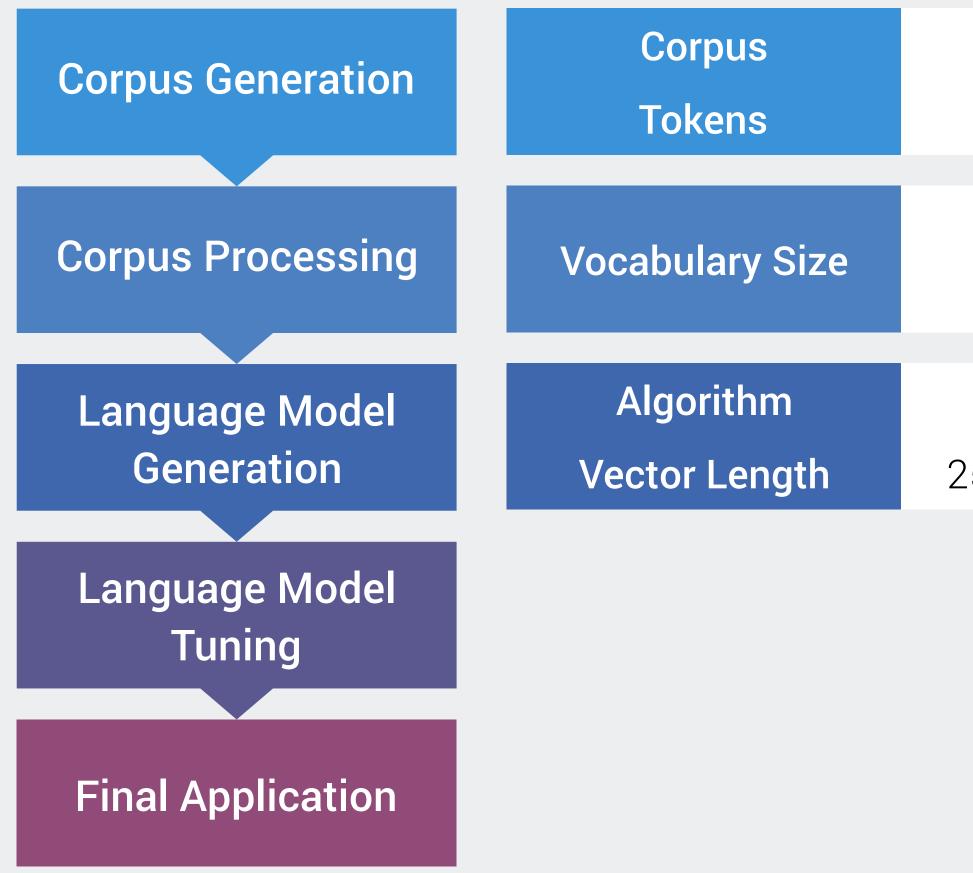
Homemake

Man :: King as Woman :: ? Man :: Programmer as Woman :: ?

Adapted from Bolukbasi et al., arXiv: 1607:06520.



Pretrained embeddings facilitate fast prototyping



Twitter	Common Crawl	GoogleNews	Wikipedia
27 B	42-840 B	100 B	6 B
1.2 M	1.9-2.2 M	3 M	400 k
GLoVE	GLoVE	word2vec	GLoVE
25 - 200 d	300 d	300 d	50 - 300 d

Problems with pretrained embedding models

Out of Vocabulary Words

Polysemy

Multi-word Expressions

Abbreviations vs Words e.g. IT vs it

Domain Specific Words & Acronyms

Words with multiple meanings e.g. drive (a car) vs drive (results) e.g. Chef (the job) vs Chef (the language)

Phrases that have new meanings e.g. Front-end vs front + end

Tools for developing custom language models Modularized for different data and modeling requirements

SpaCy ANLP

SyntaxNet CoreNLP

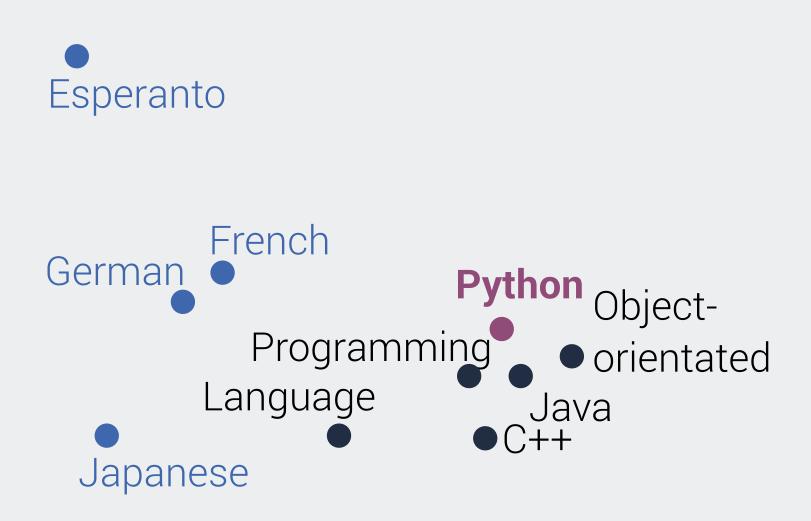
Corpus Processing

Tokenization, POS tagging, Sentence Segmentation, Dependency Parsing

Language Modeling

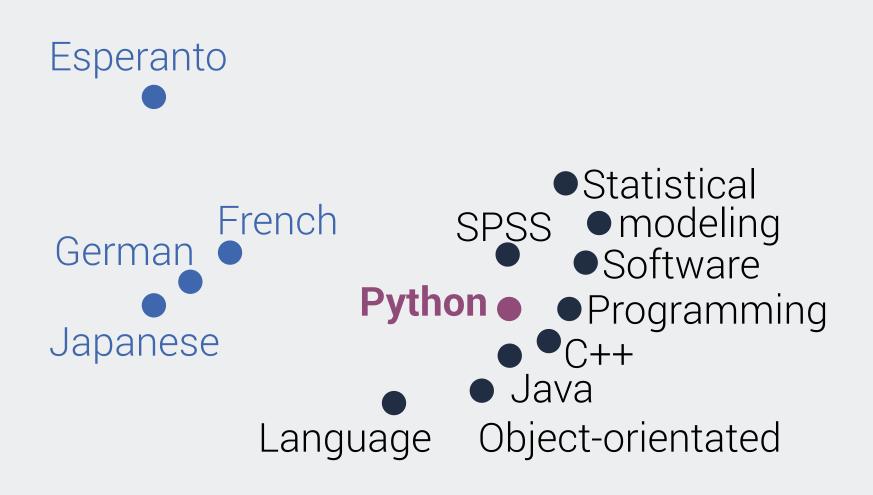
Different word embedding models (GLoVE, word2vec, fastText)

Hyperparameter tuning on final model outputs Window sizes capture semantic similarity vs semantic relatedness



Small Window Size

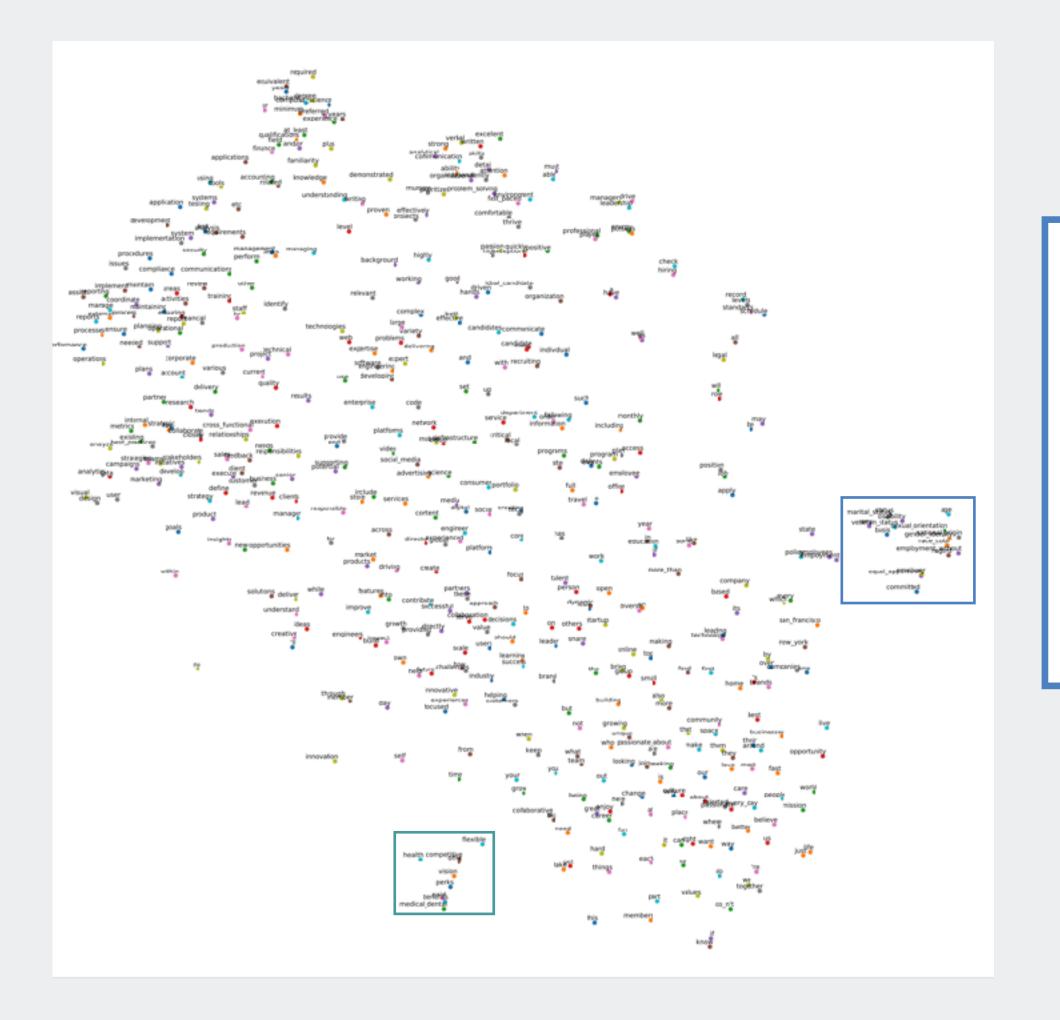
Capture Semantic similarity, Substitutes and Word-level differences

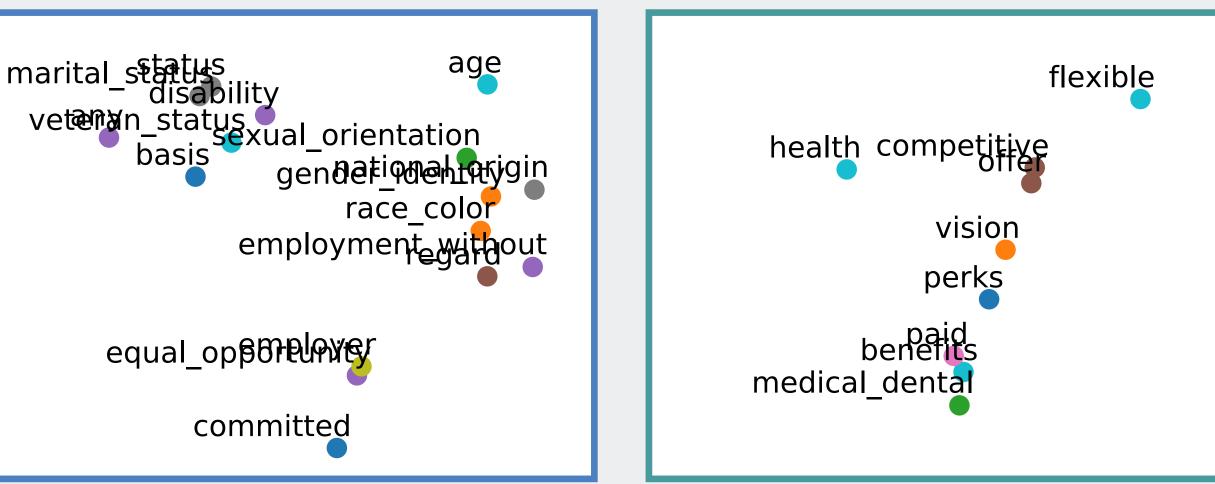


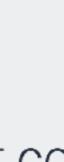
Large Window Size

Capture Semantic relatedness, Alternatives and Domain-level differences

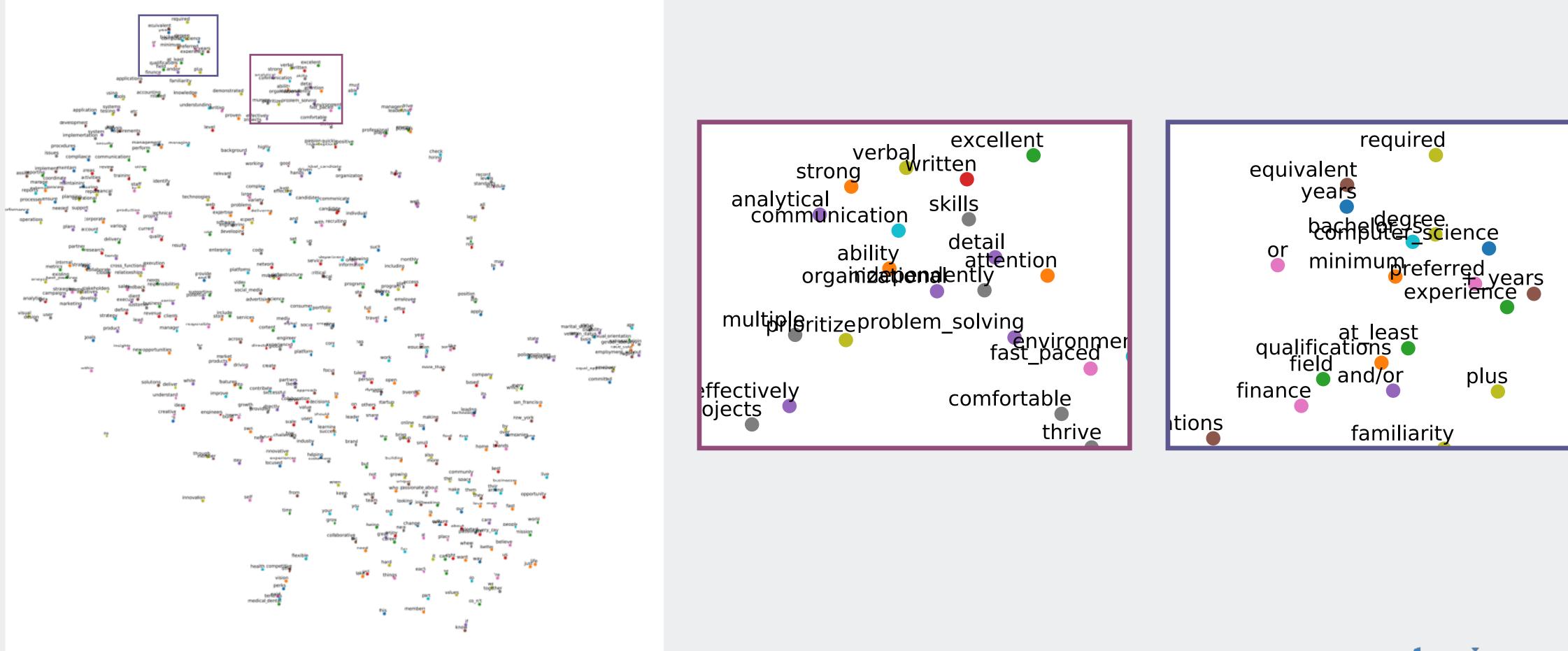
Career language embedding model Identified equal opportunity and perks language





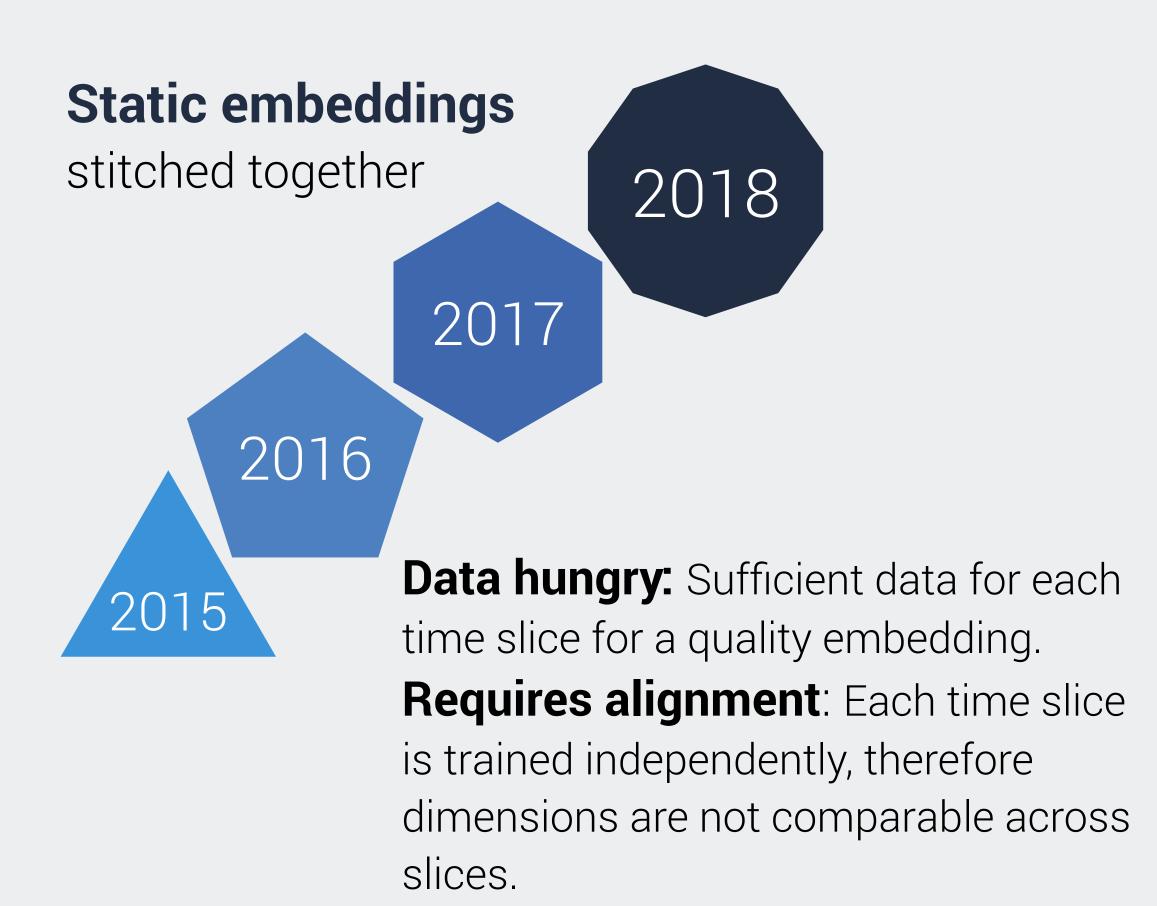


Career language embedding model Identified 'soft' skills and language around experience



l've got 300 dimensions... but time ain't one

Two approaches to connect embeddings



Kim, Chiu, Kaneki, Hedge and Petrov, <u>arXiv: 1405:3515</u>. Kulkarni, Al-Rfou, Perozzi and Skiena, <u>arXiv: 1411:3315</u>. Dynamic embeddings

2016

trained together

2015

Data efficient: Treats each time slice as a sequential latent variable, enabling time slices with sparse data.

2018

Does not require alignment: Treating time slice as a variable ensures embeddings are connected across slices.

Balmer and Mandt, <u>arXiv: 1702:08359</u> Yao, Sun, Ding, Rao and Xiong, <u>arXiv: 1703:00607</u> Rudolph and Blei, <u>arXiv: 1703:08052</u>

201

Dynamic embeddings models Rudolph and Blei, arXiv: 1703:08052

Absolute drift

Identifies top words whose usage changes over time course

words with largest drift (Senate)					
IRAQ	3.09	coin	2.39		
tax cuts	2.84	social security	2.38		
health care	2.62	FINE	2.38		
energy	2.55	signal	2.38		
medicare	2.55	program	2.36		
DISCIPLINE	2.44	moves	2.35		
text	2.41	credit	2.34		
VALUES	2.40	UNEMPLOYMENT	2.34		

Repository Link: <u>http://bit.ly/dyn_bern_emb</u>

Embedding neighborhoods

Extract semantic changes by nearest neighbors of drifting words

UNEMPLOYMENT						
1858 1940 2000						
unemployment	unemployment	unemployment				
unemployed	unemployed	jobless				
depression	depression	rate				
acute	alleviating	depression				
deplorable	destitution	forecasts				
alleviating	acute	crate				
destitution	reemployment	upward				
urban	deplorable	lag				
employment	employment	economists				
distressing	distress	predict				

tap Recruit.co

Experiments with Dynamic Bernoulli Embeddings

Sma

Job Types

Time Slices

Number of **Documents**

Vocabulary Size

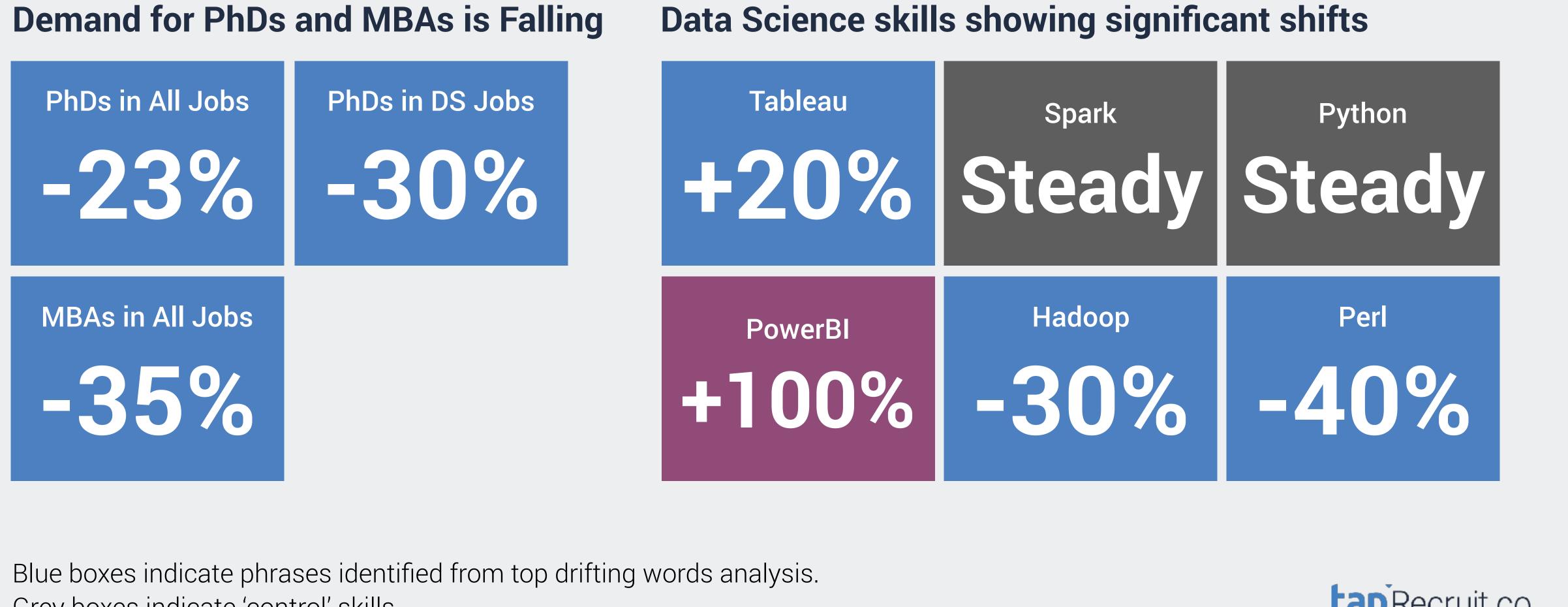
Data Preprocessing

Embedding Dimensions

Repository Link: <u>http://bit.ly/dyn_bern_emb</u>

Small Corpus	Large Corpus
All	All
3 (2016-2018)	3 (2016-2018)
50 k	500 k
10 k	10 k
Basic	Basic
100 d	100 d

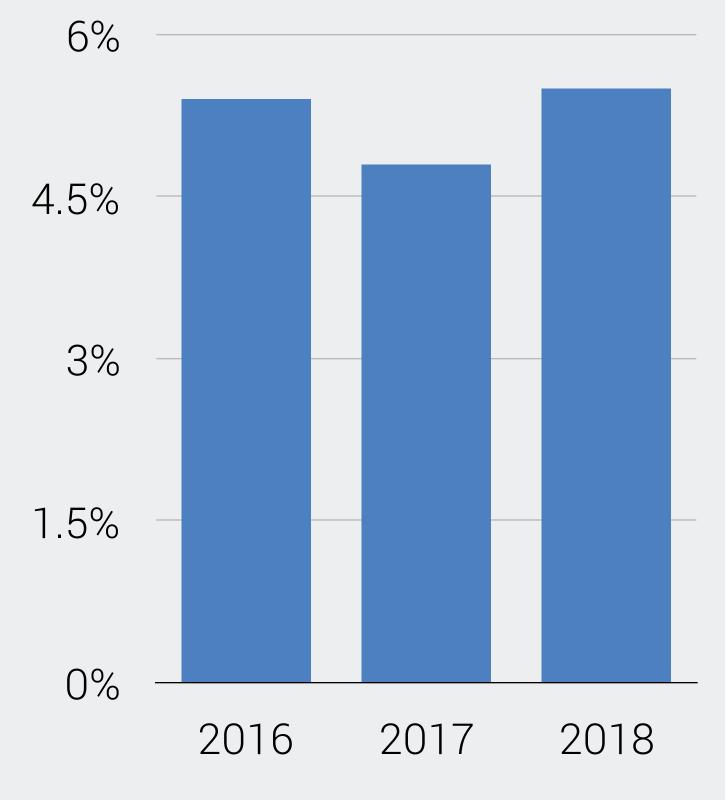
Dynamic Bernoulli embeddings Small corpus identified gains and losses



Grey boxes indicate 'control' skills.

Dynamic Bernoulli embeddings Large corpus identified role-type dependent shifts in requirements

No change to SQL demand



SQL requirement increases in specific functions

FP&A Roles	Sales Roles	Marketing Roles
F70%	Steady	Steady
FinTech Roles Steady	BizDev Roles	

regression :: Generalized Linear Models as word2vec :: Exponential Family Embeddings

Exponential Family Embeddings

Conditional probabilistic models generalize the spirit of embeddings to other data types

Proficiency Context programming Python **Datapoint Java** Context C++

Datapoint Coffee

Bernoulli Embeddings

Binary Data Presence of word, given surrounding words

Count or Ordinal Data Number of item purchased, given number of other items purchased in the same cart.

Adapted from Rudolph, Ruiz, Mandt and Blei, <u>arXiv: 1608.00778</u>.

- Mini Bagels
- Context Cream cheese Milk
- Context Orange Juice

Poisson Embeddings

JFK-CDG Context LGA-DCA JFK-DFW **Datapoint LAX-JFK** Context LAX-LGA

Gaussian Embeddings

Continuous Data Weight of an edge, given other edges on the same node.

Exponential Family Embeddings Poisson embeddings capture item similarities from shopper behavior

 \mathbf{n}

Mini Bagels Context Cream cheese Milk Datapoint Coffee	262 223 162 137
Context Orange Juice	293
Poisson Embeddings Count or Ordinal Data	69 176 241

Adapted from Rudolph, Ruiz, Mandt and Blei, <u>arXiv: 1608.00778</u>.

Maruchan chicken ramen

Maruchan creamy chicken ramen Maruchan oriental flavor ramen Maruchan roast chicken ramen

Yoplait strawberry yogurt

Yoplait apricot mango yogurt Yoplait strawberry orange smoothie Yoplait strawberry banana yogurt

Exponential Family Embeddings Inner product of vectors identify substitutes and alternatives

High Inner Product Combinations: Yield products that are frequently bought together	Old Dutch pota Lays potato
Low Inner Product Combinations: Yield products that are rarely bought together	General Mills cin Beef Swanson E

Adapted from Rudolph, Ruiz, Mandt and Blei, arXiv: 1608.00778.

ato chips & Budweiser Lager beer

o chips & DiGiorno frozen pizza

namon toast & Tide Plus detergent

Broth soup & Campbell Soup cans

How have data science skills changed over time?

- Flavors of static word embeddings: The Corpus Issue
- Considerations for developing custom embedding models
- Flavors of dynamic models: Dynamic Bernoulli embeddings
- Other members of the Exponential Family of Embeddings

Thank you Domino NYC!

Maryam Jahanshahi Ph.D. Research Scientist 57 @mjahanshahi in maryam-j

tap Recruit.co

http://bit.ly/domino-nyc

