# Using Text Analysis And Data **Modeling To Understand Big Data**

Maryam Jahanshahi Ph.D. Research Scientist

# tap Recruit.co



## **Content matters in job descriptions**

Same title, Different job

#### **Finance Manager Kraft Foods**

Junior (3 Years)

No Managerial Experience

Different title, Same job

#### Performance Marketing Manager **PocketGems**

**Mid-Level** 

Quantitative Focus

iBanking Expertise

Data Analysis Tools (SQL)

Consulting Experience Preferred

**MBA** Preferred

## Roche

Senior (6-8 Ye

**Division Level** Strategic Fina

MBA / CPA

#### Senior Analyst, **Customer Strategy** The Gap

**Mid-Level** 

**Quantitative Focus** 

Finance Expertise

#### **Finance Manager**

| ears)      |  |
|------------|--|
| Controller |  |
| ance Role  |  |
|            |  |

#### Same Title

 $(\mathbf{X})$ 

 $\mathbf{X}$ 

 $(\mathbf{X})$ 

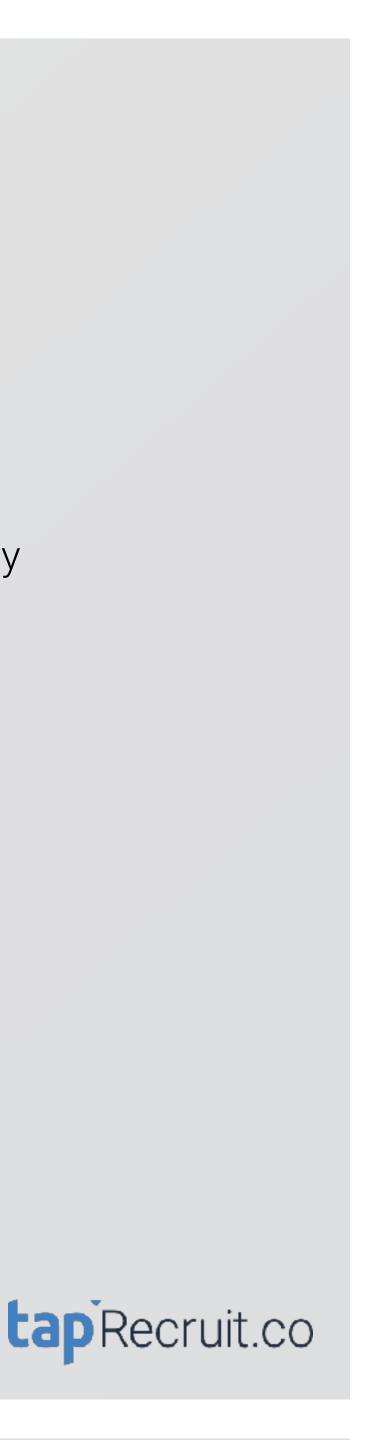
(✓

(✓

**Required Experience** Required Responsibility Preferred Skill Required Education

- Relational Database Experience
- **External Consulting Experience Preferred**
- BA in Accounting, Finance, MBA Preferred

- **Required Experience**
- **Required Skills**
- **Required Experience**
- **Required Skills**
- Preferred Experience
  - **Preferred Education**



#### Today:

1. Designing Text Preprocessing Pipelines 2. Transforming Text into Feature Representations 3. Approaches to Classify Documents



## **Typical Questions when Analyzing Text**

### **Data Resolution:** Are these two pieces of data the same?

What type of news does this article contain?

"Software Engineer" "Software Enginere"

"Software Engineer" "Sr Software Engineer"

"Software Engineer" "Computer Programmer" Good

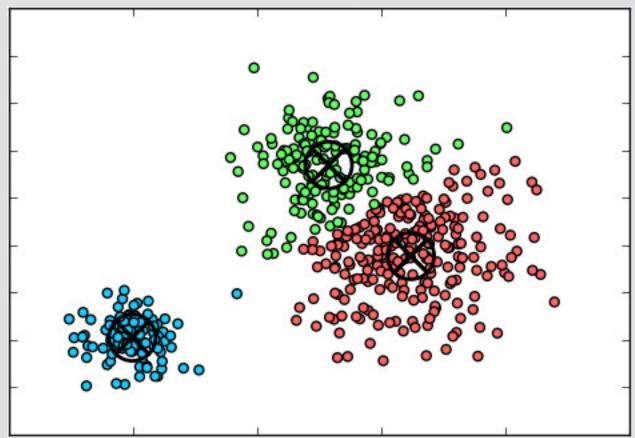
Predict Unknown Values

### **Document Classification:**

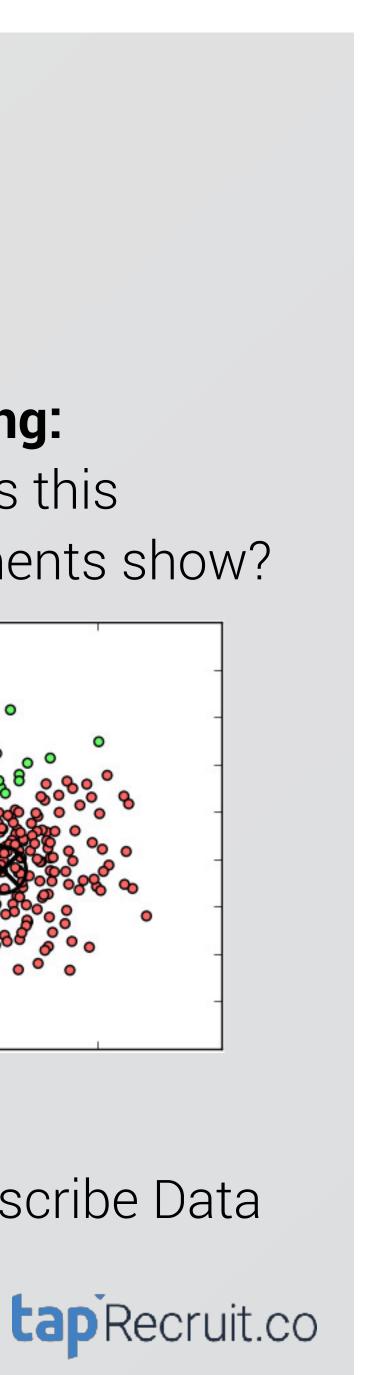


### **Document Clustering:**

What structure does this collection of documents show?



Find Patterns to Describe Data



### **Approaches to Analyze Text**

### Text Mining

Goal: Extract Useful Information from Text Data (Overview)

Approaches: Pattern Matching or Matching Structure of Text Data

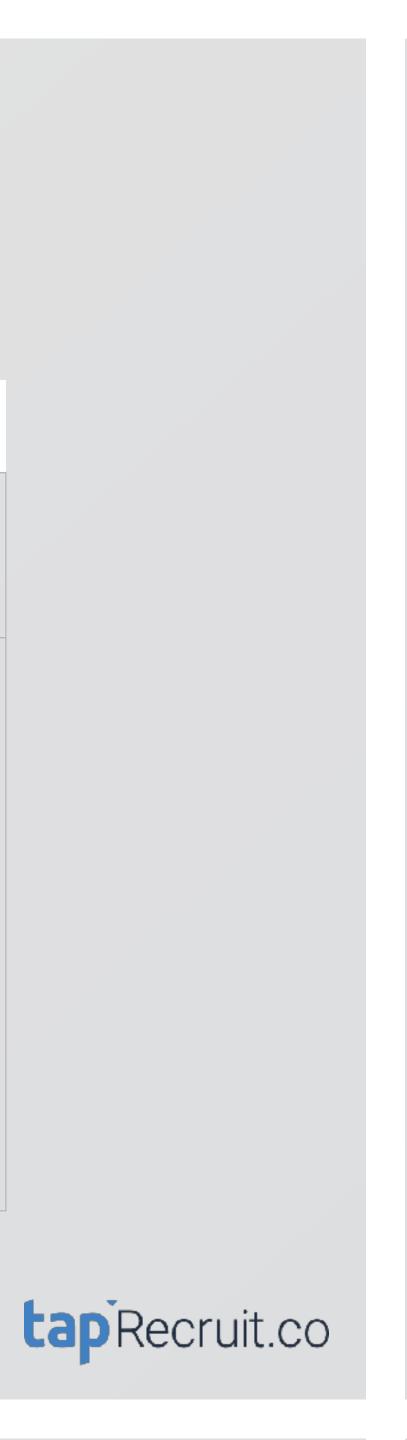


Natural Language Processing

Goal: Understand what the Text is Conveying (Granular)

Approaches: Extracting Semantic Meaning from Text Data

Models used typically include: Lexical Analysis (Part of Speech tagging) Named Entity Recognition, Relationship Extraction and Semantic Analysis (WordNet, DBpedia)



## **Resources for Text Analysis Projects**

Data Ingestion

Data Organization

Applied Text Analysis with Python by Benjamin Bengfort, Rebecca Bilbro & Tony Ojeda

Data Preprocessing

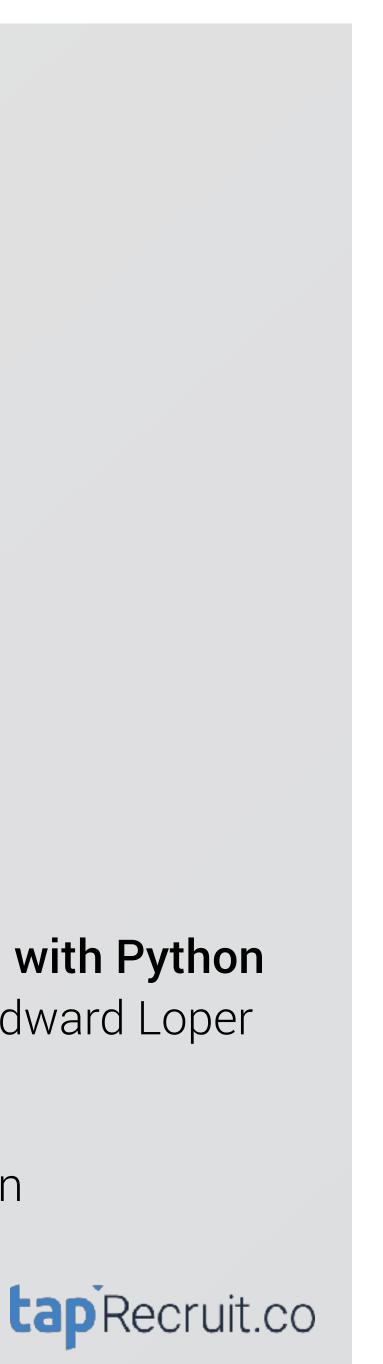
Feature Engineering

Model Building

**Speech and Language Processing** by Dan Jurafsky & James Martin

**Foundations of Statistical NLP** by Chris Manning & Hinrich Schutze **Natural Language Processing with Python** by Steven Bird, Ewan Klein & Edward Loper

**Text Mining with R** by Julia Silge & David Robinson



## **Data Preprocessing is Critical**



Data Preprocessing

#### Feature Engineering

Model Building



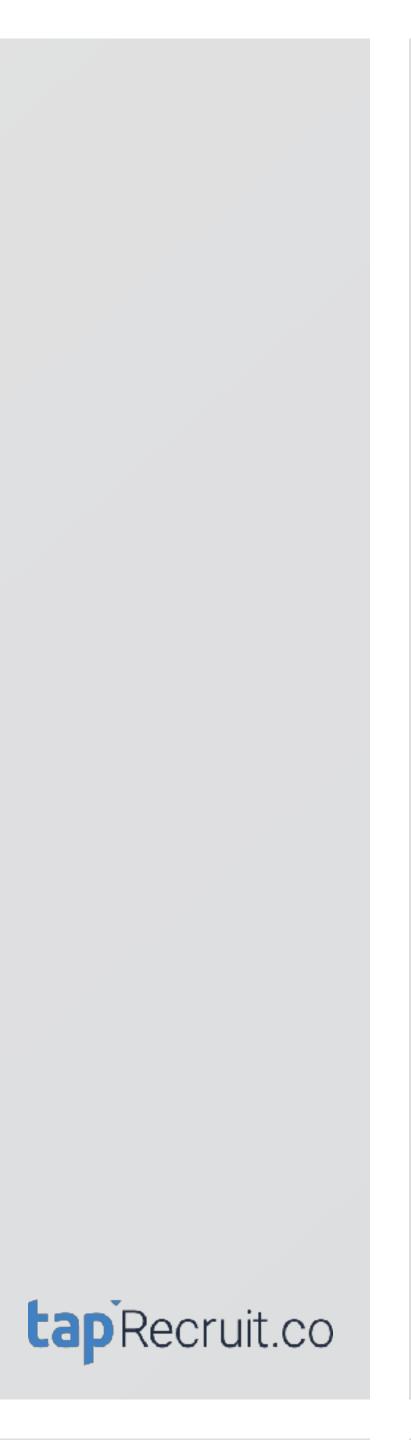
Alex Gude @alex\_gude

Here is a real use case from work for model improvement and the steps taken to get there:

- Baseline: 53%
- Logistic: 58%
- Deep learning: 61%
- \*\*Fixing your data:

Some good ol' fashion "understanding your data" is worth it's weight in hyperparameter tuning!

3:48 PM · Apr 24, 2019 · Twitter Web Client



 $\sim$ 

## The Lifecycle of a Text Analysis Project



Data Organization



Data Preprocessing

Feature Engineering

Corpus: A collection of documents



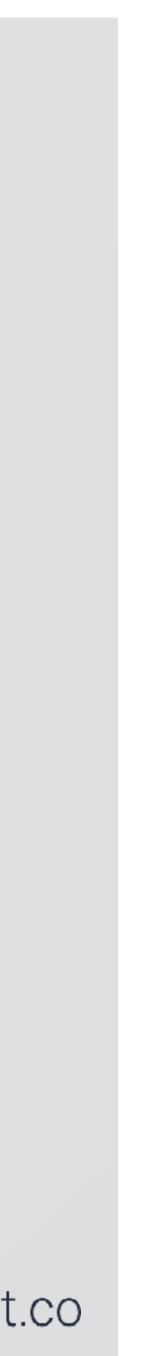
('hackathon', Hackathons are awesome' NN)

**Document:** Unprocessed string, typically associated with structured data

Segment: Processed string (i.e. sentence, paragraph etc.)

Token: Single processed data point





#### Today:

1. Designing Text Preprocessing Pipelines 2. Transforming Text into Feature Representations 3. Approaches to Classify Documents



## **Best Practices in Data Organization**

Separating Raw Documents from Processed Intermediaries

corpus README.md raw 01.txt02.txt03.txt metadata.json processed processed.json metadata.json scripts

Save down processed documents either as JSON objects or in a document database (NoSQL)

### Metadata:

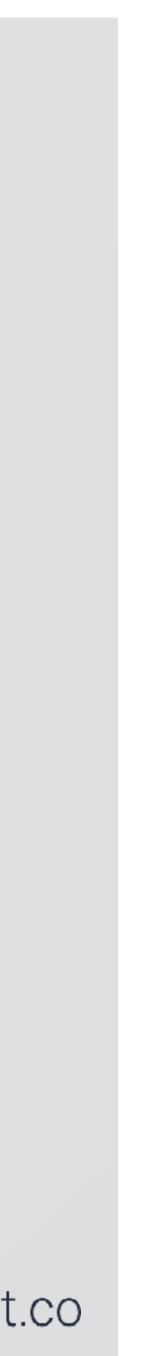
Define what has been processed and when in metadata:

- Files
- Words
- Unique Tokens
- Date of latest preprocessing —

Further Reading: Applied Text Analysis with Python by Bengfort, Bilbro & Ojeda

### **Processed documents:**





## **Advanced Best Practices in Data Organization**

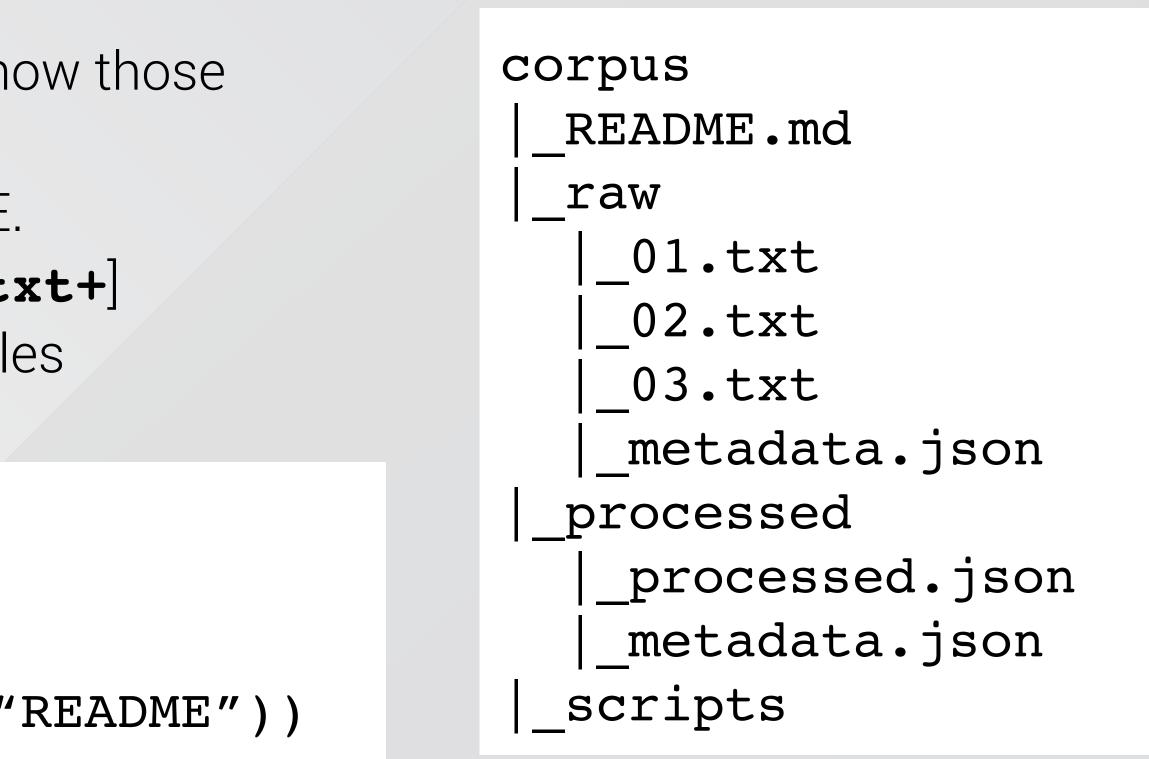
Creating a Corpus Reading Module

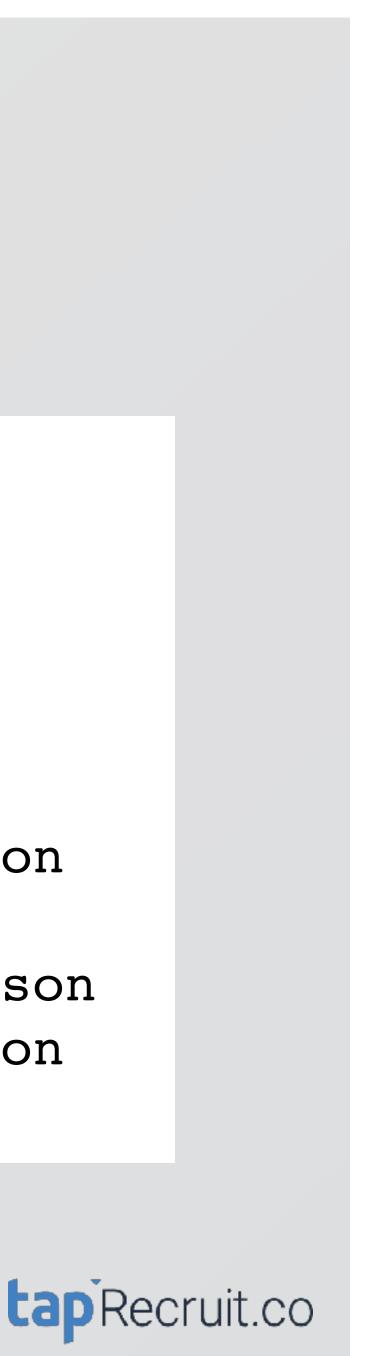
- Define which files should be loaded and how those files should be loaded.
  - Store these as parameters in README.
  - Regex for file names / formats [\w\.txt+]
  - Can include a filter list for restricting files

#### import json

def project\_reader(self):
 return json.load(self.open("README"))

Further Reading: Applied Text Analysis with Python by Bengfort, Bilbro & Ojeda





### **Designing Data Preprocessors**

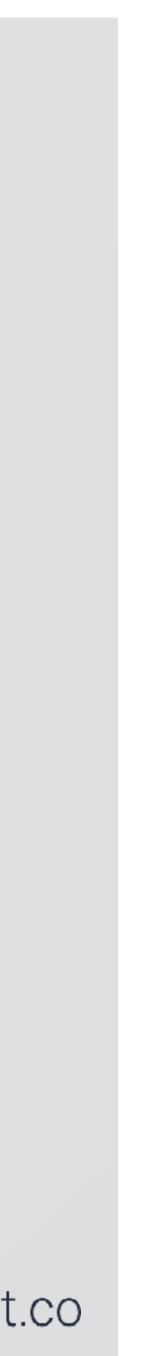
### Clean up

Segmentation

Normalization

- **Goal:** Remove inconsistency between otherwise similar data points
- **Goal:** Split text chunks into data points (i.e. the unit of analysis or evaluation)
- **Goal:** Put data points on an equal footing





## **Designing Data Preprocessors**

### Clean up

### Segmentation

### Normalization

### **General Considerations**

- \_

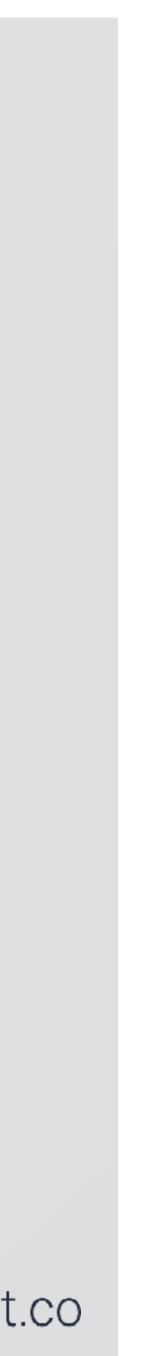
### **Specific Considerations**

\_

- What is the unit or data structure of analysis? (Tokens vs sentences vs paragraphs vs docs) Can the cleanup aid segmentation?

What is the role of punctuation? What role do hyphenated words play? Will parsing emojis or emoticons be helpful?





## **Typical Clean Up Pipeline**



### We didn\u0027t start the fire!

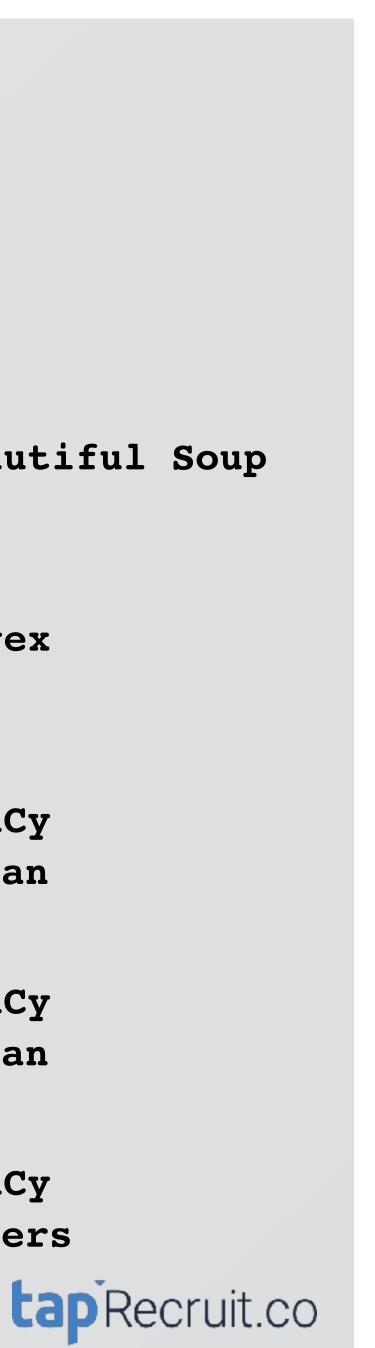
Python: Beautiful Soup R: **xm12**?

Python: **regex** R: utf8

Python: **spaCy** R: textclean

Python: **spaCy** R: textclean

Python: **spaCy** R: tokenizers



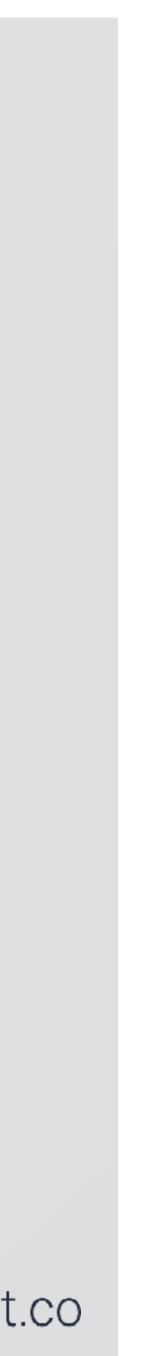
## **The Order of Operations Matters!**



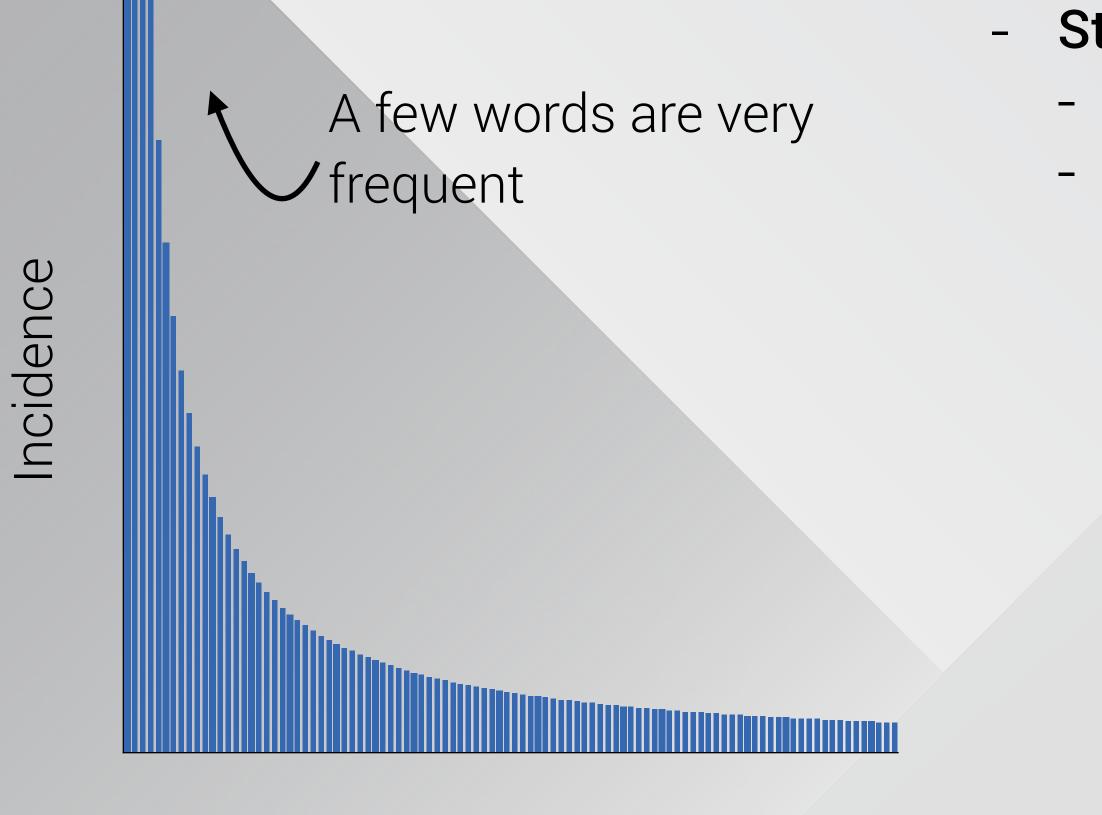
We didn\u0027t start the fire!

We | didnu0027t | start | the | fire





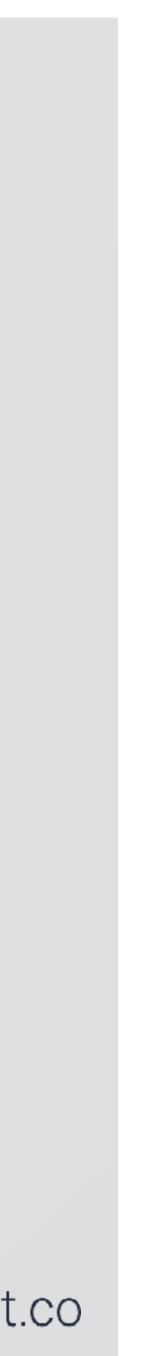
## Word Incidence is Rarely Distributed Normally



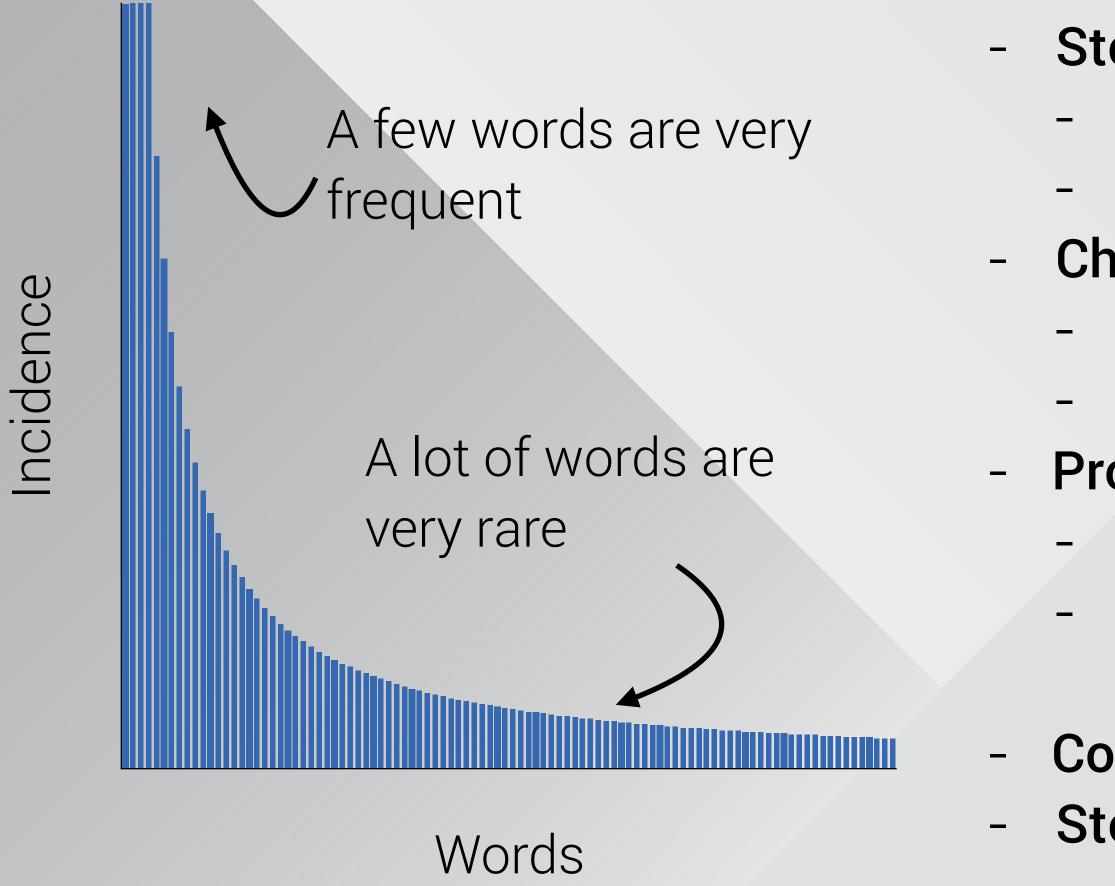
Words

Stop words: Removing most frequent words.
Standard list with most NLP libraries
Make your own artisanal list





## Word Incidence is Rarely Distributed Normally



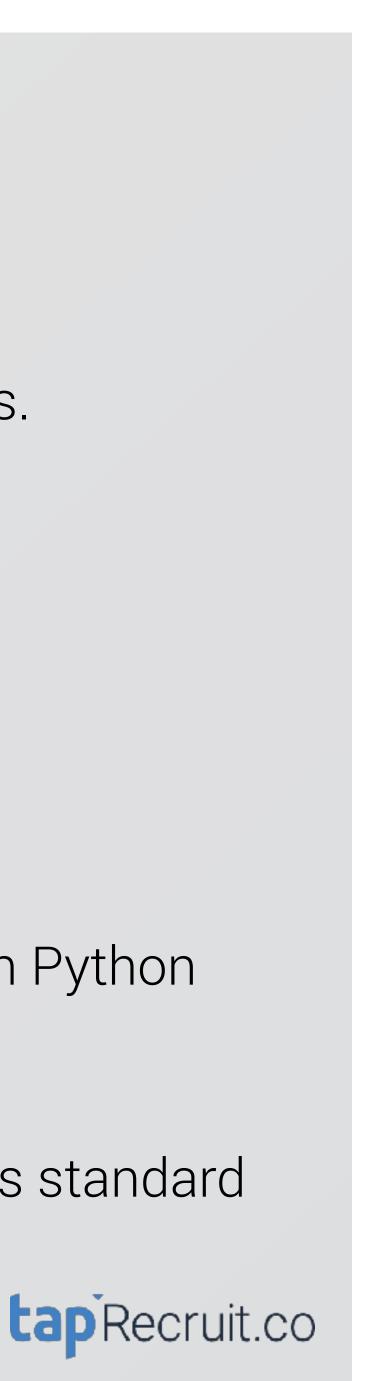
- **Stop words**: Removing most frequent words.
  - Standard list with most NLP libraries
    - Make your own artisanal list

### - Changing cases:

- Standard is to convert to lower case
  - Casing may matter for you (e.g. IT vs it)

#### - Process numbers:

- Standard is to remove all numbers
- Convert into words via **inflect** library in Python
  - and **textclean** package in R
- Correct spelling:
  - Stem or lemmatize words: Lemmatization is standard



Case Study 1 Add information from a new source to your CRM database, joining on job titles. The new information comes from a scraped website.

How should we preprocess this data to ensure we correctly resolve duplicate records?

#### Today:

1. Designing Text Preprocessing Pipelines 2. Transforming Text into Feature Representations 3. Approaches to Classify Documents



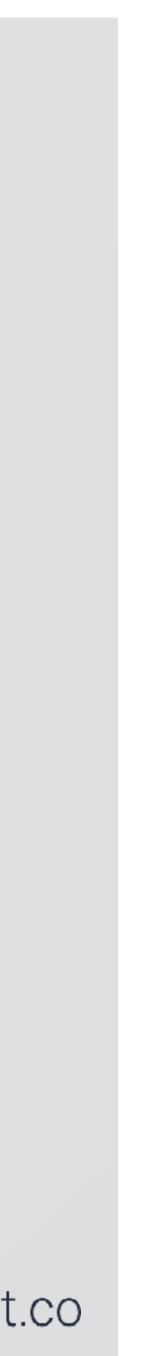
## **Feature Representations**

Bag of Words representation vectorizes through word counts

#### "We didn't start the fire"

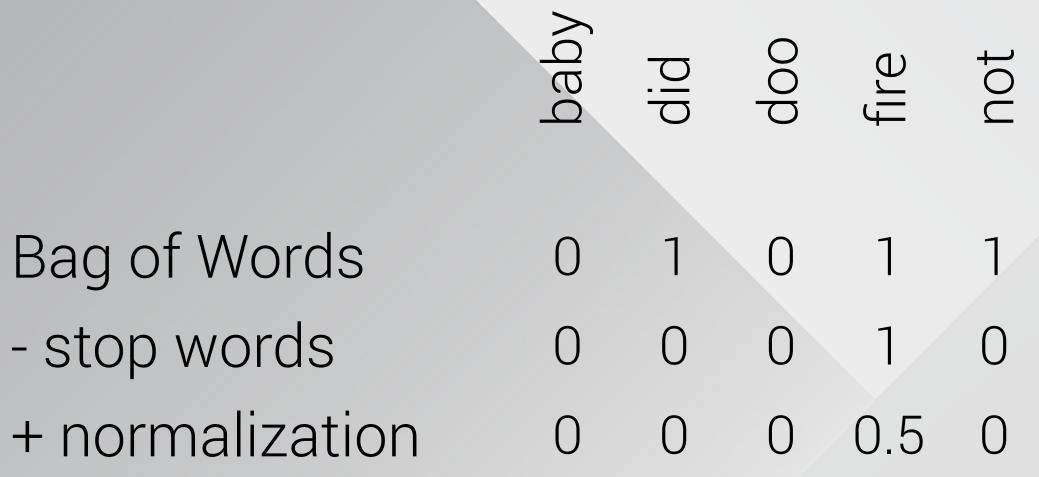
"Baby shark, doo doo doo doo doo doo" 1 0 6 0 1 0 0 0





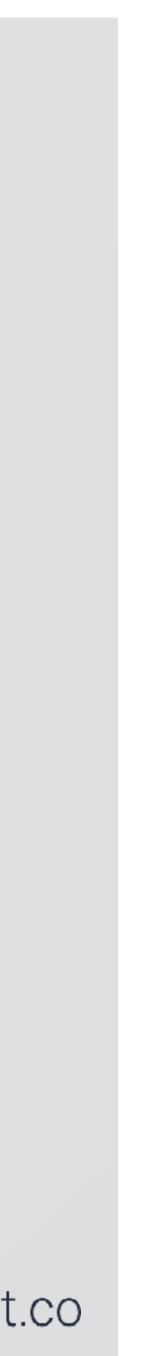
### Feature Representations Normalized Bag of Words can be instructive

### "We didn't start the fire"



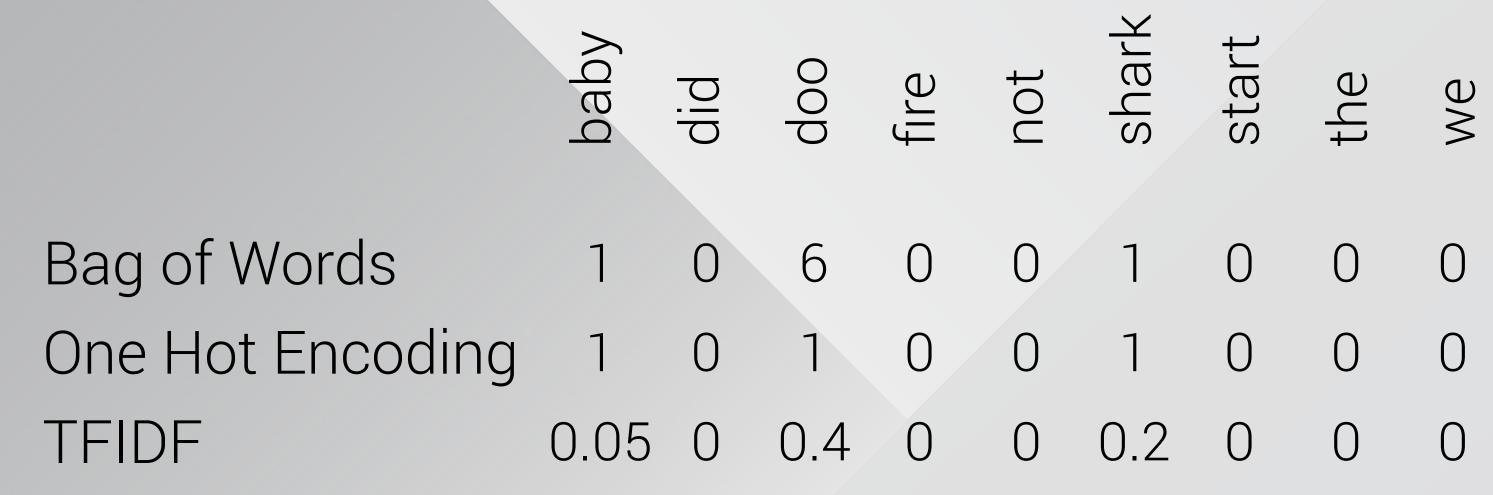
| ive |       |       |          |             |
|-----|-------|-------|----------|-------------|
|     |       |       |          |             |
|     |       |       |          |             |
|     |       |       |          |             |
| )   | shark | start | he       | <<br>A<br>B |
|     | 0)    | 0)    | <u>ب</u> | >           |
|     | 0     | 1     | 1        | 1           |
|     | 0     | 1     | 0        | 0           |
|     | 0     | 0.5   | 0        | 0           |
|     |       |       |          |             |



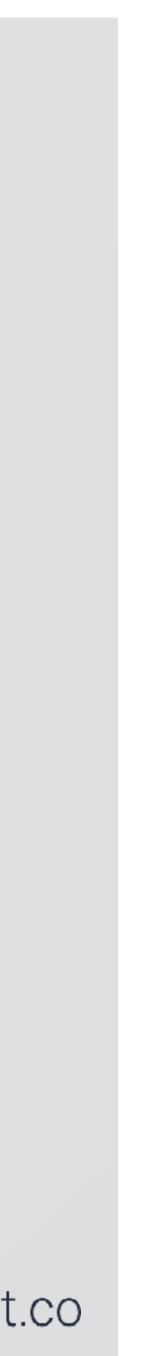


### **Feature Representation** One Hot Encoding and TFIDF normalize token frequencies

"Baby shark, doo doo doo doo doo doo"







### **Overview of Feature Representations Methods**

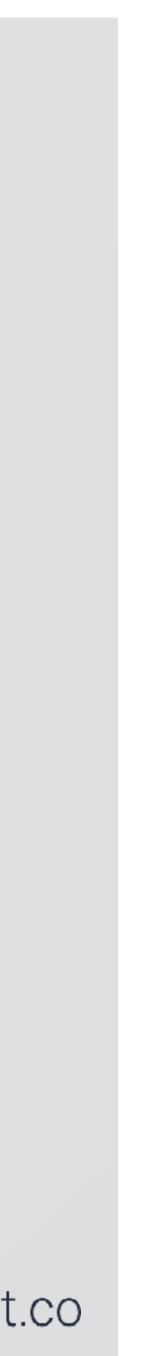
| One Hot Encoding   | Bag of Words                    |          |
|--------------------|---------------------------------|----------|
| Stop word removal? | Stop word<br>removal            | Nc       |
| None               | Document-level<br>normalization | Co<br>le |

### TF-IDF

o need for stop word removal

orpus and documentlevel normalization





## Word Embeddings capture Semantic Similarities

Statistical modeling through software (e.g. SPSS) or programming language (e.g. **Python**)

Context Experience in Python, Java or other object-oriented programming languages

Word Context

Proficiency programming in **Python**, Java or C++.

Context

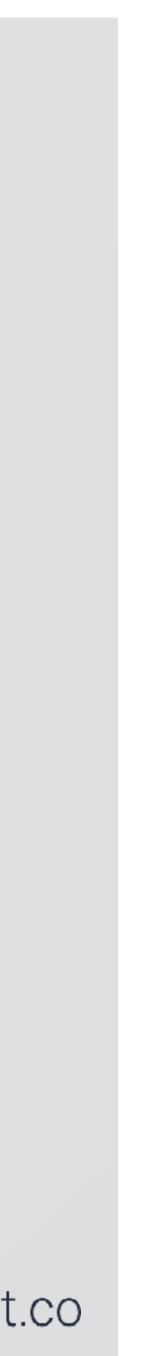
Word

Context

Word

Context

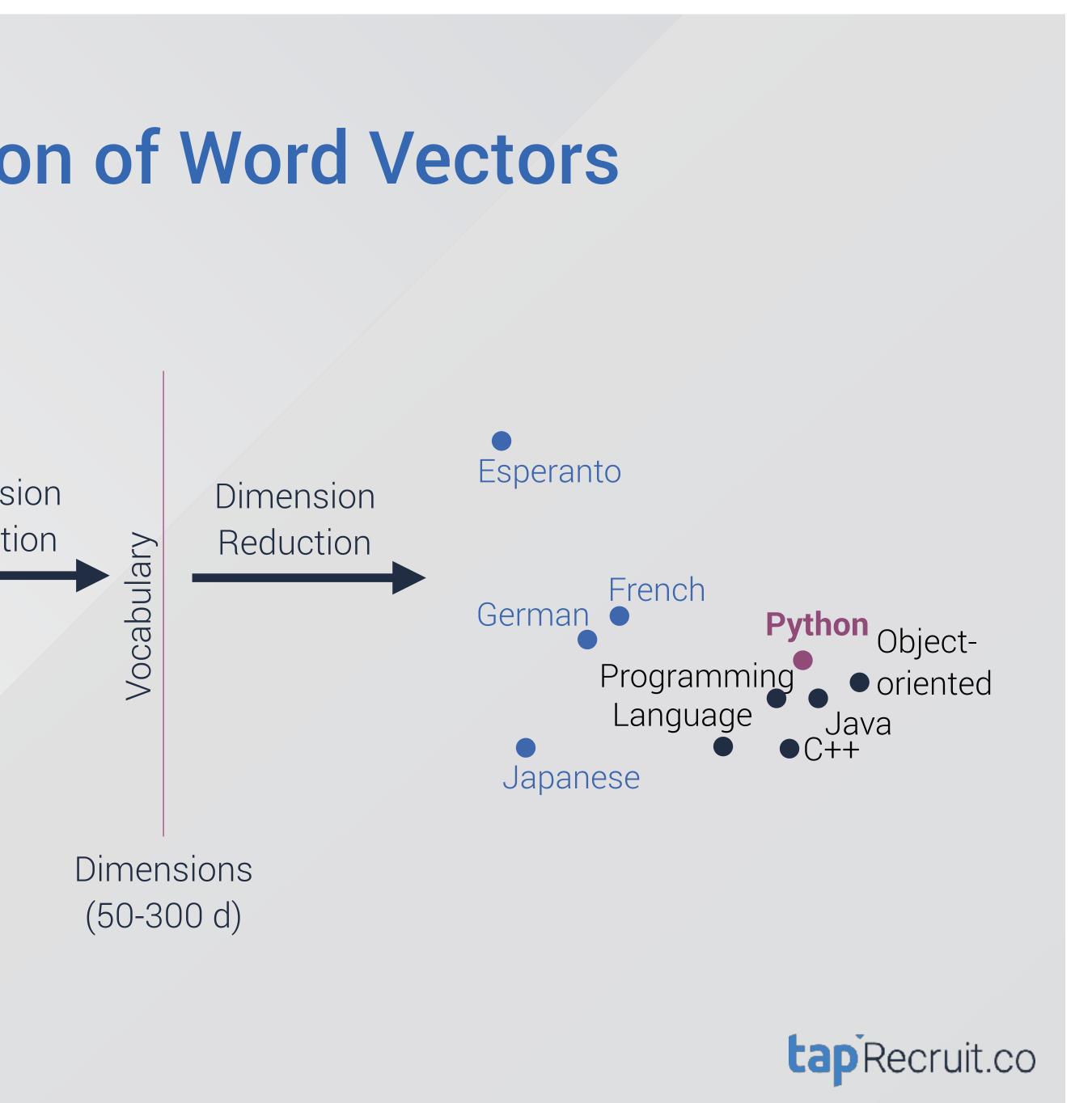




## **A Simplified Representation of Word Vectors**

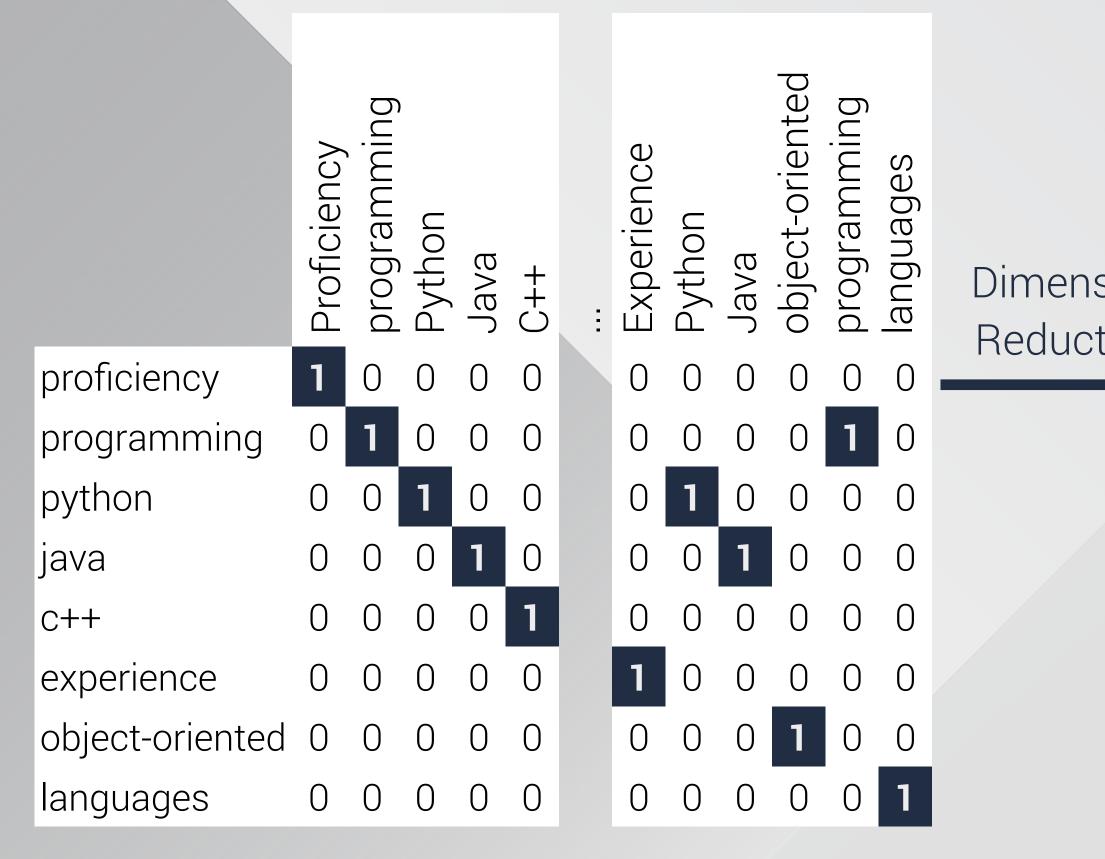
Dimension Reduction

Tokens in corpus (Millions or Billions)



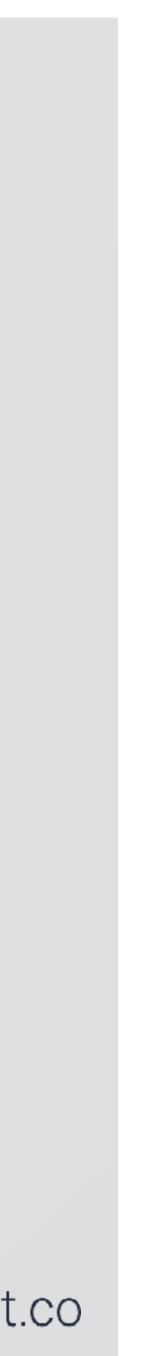


## **A Simplified Representation of Word Vectors**



| sion |                 | qualification | data science | translation | : |
|------|-----------------|---------------|--------------|-------------|---|
| tion | proficiency     | 0.8           | 0.1          | 0.3         |   |
|      | programming     | 0.2           | 0.7          | 0.1         |   |
|      | python          | 0.1           | 0.9          | -0.2        |   |
|      | java            | -0.1          | 0.6          | 0.1         |   |
|      | C++             | -0.2          | 0.4          | -0.1        |   |
|      | experience      | 1.0           | 0.3          | 0.4         |   |
|      | object-oriented | -0.3          | 0.3          | -0.2        |   |
|      | languages       | 0.4           | 0.1          | 0.9         |   |





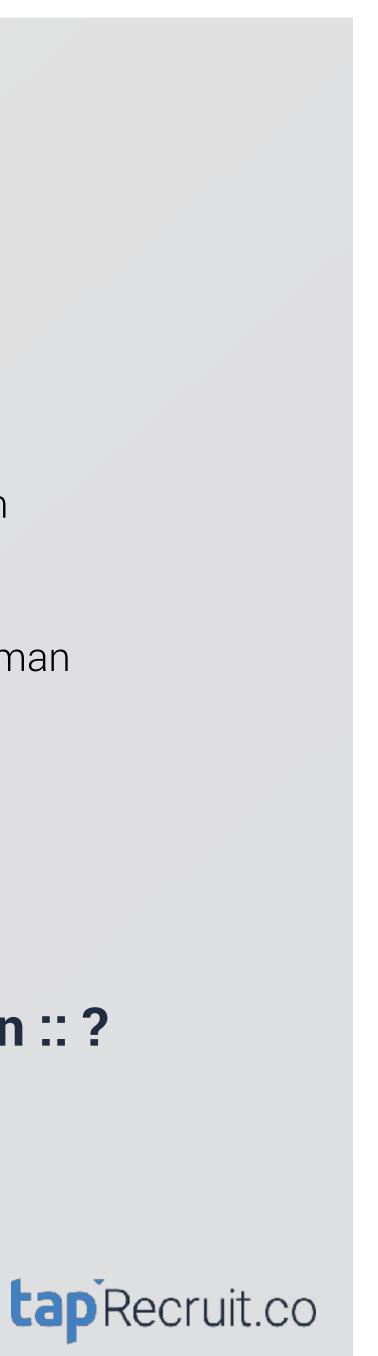
## Word Embeddings capture Entity Relationships



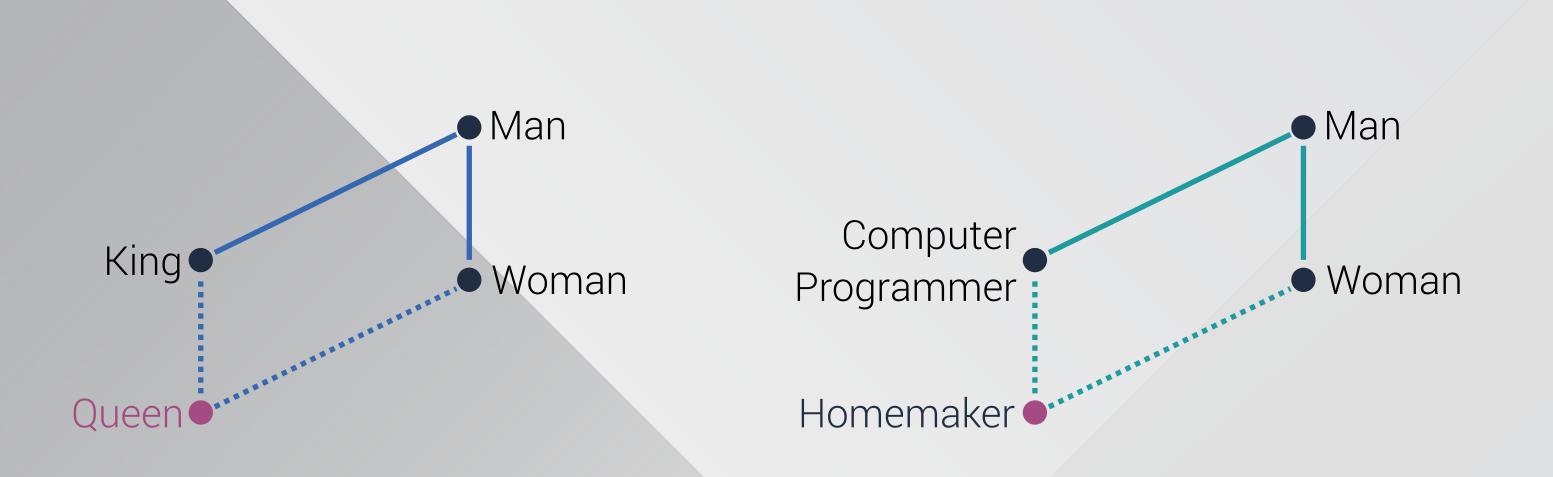
Adapted from <u>Stanford NLP GLoVE Project</u>

#### **Comparatives and Superlatives**

### Man :: King as Woman :: ?



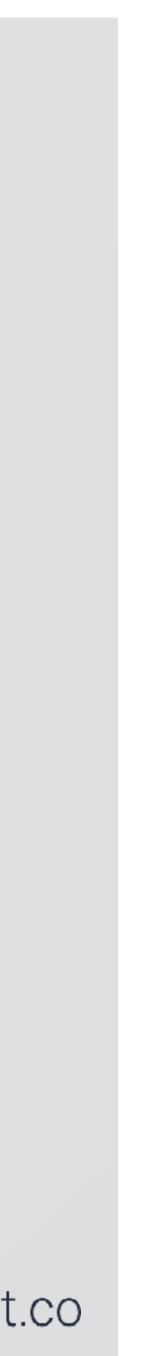
## **Embeddings reflect Cultural Bias in Corpora**



### Man :: King as Woman :: ? Man :: Programmer as Woman :: ?

Adapted from Bolukbasi et al., arXiv: 1607:06520.

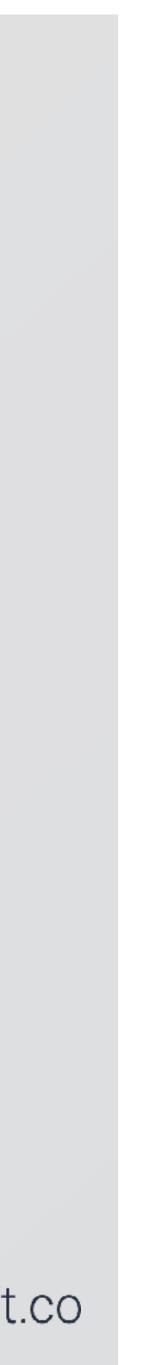




## **Overview of Feature Representations Methods**

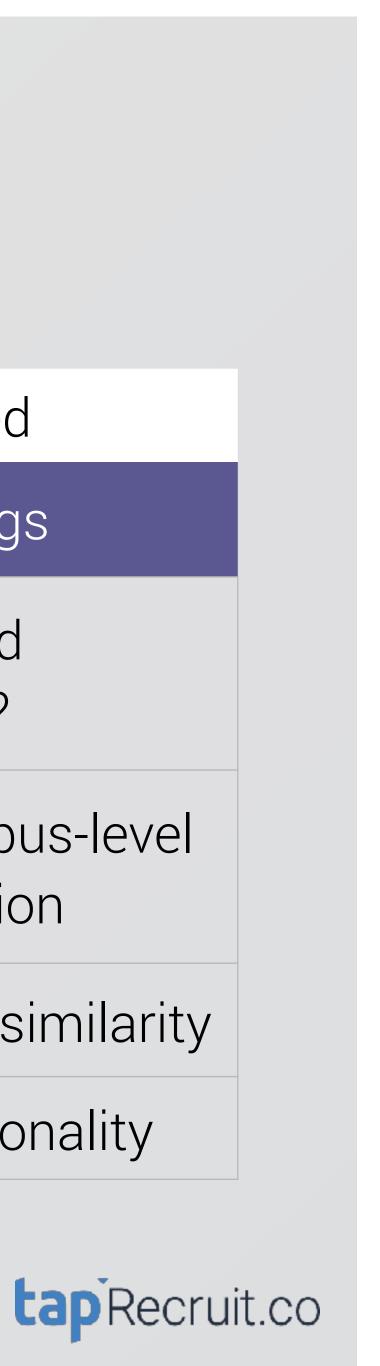
|                       | Non-distributed                 |                                             | Distributed                            |
|-----------------------|---------------------------------|---------------------------------------------|----------------------------------------|
| One Hot Encoding      | Bag of Words                    | TF-IDF                                      | Embeddings                             |
| Stop word<br>removal? | Stop word<br>removal            | No need for stop word removal               | Stop word<br>removal?                  |
| None                  | Document-level<br>normalization | Corpus and document-<br>level normalization | Context and corpus-level normalization |





## **Overview of Feature Representations Methods**

| Non-distributed                       |                                 |                                             | Distributed                            |
|---------------------------------------|---------------------------------|---------------------------------------------|----------------------------------------|
| One Hot Encoding                      | Bag of Words                    | TF-IDF                                      | Embeddings                             |
| Stop word removal?                    | Stop word<br>removal            | No need for stop<br>word removal            | Stop word<br>removal?                  |
| None                                  | Document-level<br>normalization | Corpus and document-<br>level normalization | Context and corpus-level normalization |
| All tokens are equidistant            |                                 |                                             | Distance « token similarity            |
| High dimensionality, extremely sparse |                                 |                                             | Lower dimensionality                   |



Case Study 2 Our marketing department has been running ad campaigns on different social media platforms. They want to understand which characteristics are shared by the ads that are high performers.

What would we advise them?



#### Today:

1. Designing Text Preprocessing Pipelines 2. Transforming Text into Feature Representations 3. Approaches to Classify Documents



## **Tasks in Document Analysis**

| Descriptive Approaches                                                                                                                                |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Find patterns to describe data                                                                                                                        |                 |
| Approach: Unsupervised Learning<br>Class labels of data is unknown. Given<br>a set of measurements, goal is to<br>identify some clusters in the data. | Ger<br>ha<br>ob |
| Examples: Clustering, Summarization                                                                                                                   |                 |

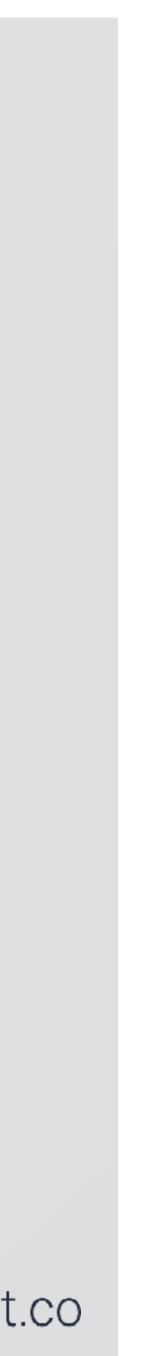
### Predictive Approaches

Predict unknown values from a model using known baselines

Approach: Supervised Learning nerate a model using training data which as a set of labels which indicate class of bservations. Model classifies new data.

Examples: Classification, Ranking, Regression etc.





# **Overview of Document Categorization**

Extracting semantic structure from numeric features

| Topic | Modeling |
|-------|----------|
|       |          |

What are the topics that occur in a collection of documents?

Every document is a mixture of topics

Every topic is a mixture of words

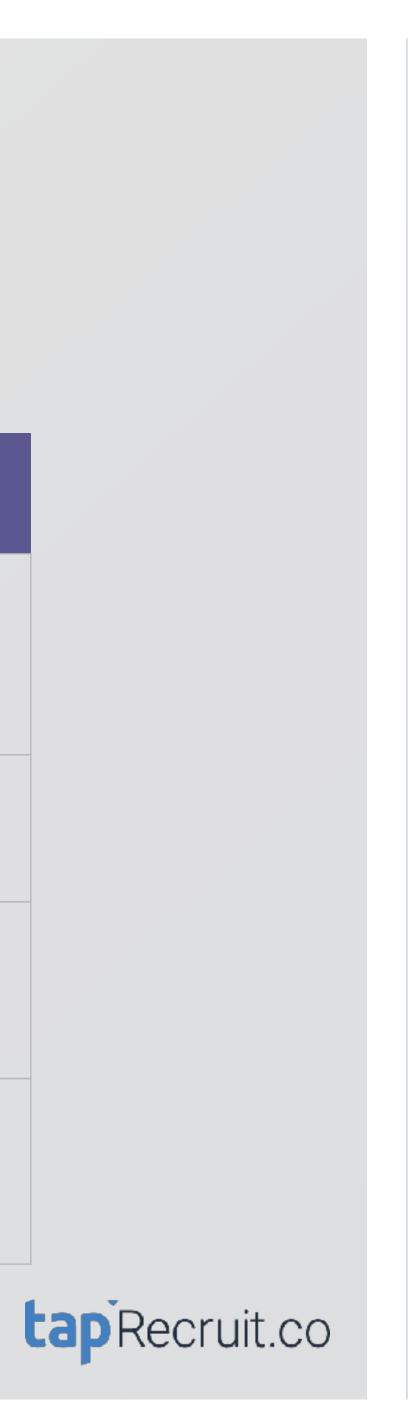
Unsupervised Dimension Reduction (LDA / LSA) Document Classification

Which class does document X belong to?

Every document belongs to a single class

The presence or absence of a subset of words impacts the classification

Supervised ML Algorithms Regex (Standard or Artisanal)



### **Case Study 3** Our colleagues have conducted a survey, including a lot of questions that had free-form answers. They need help extracting some insights from these answers.

How would you advise them to analyze the data?

### Takeaways:

**1. Text Preprocessing** Goal: To put data points on an equal(ish) footing Cleanup / Segmentation / Normalization Stopwords / Cases / Spelling / Lemmatization

2. Feature Representation of Text Goal: To transform text into vectorized representations for downstream Bag of Words / TFIDF / One-Hot Encoding / Embeddings

3. Document Classification Goal: To determine whether a document is similar or different to others Topic Modeling / Document Classification



# Thank you ERP Hackathon! Link to deck: <u>http://bit.ly/erp-hackathon-2019</u>

Maryam Jahanshahi Ph.D. Research Scientist

@mjahanshahi in maryam-j

# tap Recruit.co

