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Achtung!

The tfocus of this talk will not be about text analysis In R

Corpus Processing Stack Considerations
- Actively developed libraries
Spacy - Industrial-strength NLP:

- Parallel processing of large datasets
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A Day In the Life of an NLP Project

Data Ingestion




Textual Resources for Text Analysis and NLP

Applied Text Analysis with Python by
Data Ingestion Benjamin Bengfort, Rebecca Bilbro & Tony
Ojeda

Natural Language Processing with Python by
Steven Bird, Ewan Klein & Edward Loper

Speech and Language Processing by Dan

Text Mining with R by Jurafsky & James Martin

Julia Silge & David Robinson Foundations of Statistical Natural Language
Processing by Chris Manning & Hinrich
Schutze



A Day In the Life of an NLP Project

A N\ ‘Amanda
didn’t (“fire’, NN)
start the fire’

Corpus: Document: Segment: Token:
A collection Unprocessec Processed Processed
of documents string, typically  string single data

assoclated with ~ (i.e. sentence,  point
structured data  paragraph etc.)




Designing Data Preprocessors

Goal: Remove inconsistency between
otherwise similar data points

Goal: Split text chunks into data points
(I.e. the unit of analysis or evaluation)

Goal: Put data points on an equal footing




Designing Data Preprocessors

General Considerations

- What Is the unit or data structure of analysis?
(Tokens vs sentences vs paragraphs vs docs)

- Can the cleanup ald segmentation?

Specific Considerations

- What is the role of punctuation?

- What role do hyphenated words play?

- Will parsing emojis or emoticons be helpful?




Functions In a typical clean up script

Python: Beautiful Soup
R: xml2?

<p>Amanda didn\u0027t start the firel</p>

Python: regex
R:utf8

Amanda didn\u00271t start the fire!

Python: spaCy
R: textclean

Amanda didn’t start the fire!

Python: spaCy
R: textclean

Amanda did not start the firel

Python: spaCy
R: tokenizers

Amanda did not start the fire



Functions In a typical clean up script

The order of operations 1S Important

Python: Beautiful Soup
R: xml2?

<p>Amanda didn\u0027t start the firel</p>

Python: spaCy
R textclean

Amanda didnu0027t start the fire

Python: spaCy
R: textclean

Amanda didnu0027t start the fire

Amanda didnu0027t start the fire vihon regex

Python: spaCy
R: tokenizers

Amanda didnu0027t start the fire



Word Incidence Is rarely distributed normally

- Stop words: Removing most frequent words.
A few words are - Standard list with most NLP libraries
very frequent - Make your own artisanal list

Incidence

Words
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Word Incidence Is rarely distributed normally

- Stop words: Removing most frequent words.
A few words are - Standard list with most NLP libraries
very frequent - Make your own artisanal list
- Changing cases:
- Standard Is to convert to lower case
Aot of words - Casing may matter for you (e.g. IT vs it)
are very rare - Process numbers:
- Standard Is to remove all numbers
) - Convert Into words via inflect library in
Python and texteclean package In R
- Correct spelling:
- Stem or lemmatize words: Lemmatization Is sta

Incidence

Words



Best Practices In Data Organization

corpus Processed documents:
_README .md Save down processed documents either as JSON
_Ltaw objects or in a document database (NoSQL)
- 01.txt
—8? tzt Metadata:
— . Define what has been processed and when In
_metadata.json
| processed n%%adamx
_processed. json - Files
- metadata. json - Words
| scripts - Unique Tokens

- Date of latest preprocessing



Advanced Best Practices in Data Organization

Create a corpus reading module:
es should be loaded and how

- Define which fi
those files sho

- Store these as parameters in R

uld be loaded.

- Regex for file names / formats

- Can Include

~ADME.

\w\.txt+]
a filter list for restricting files

corpus
- README .md
- raw

- 01.txt
~02.txt
- 03.txt
~metadata.json
| processed
~ processed. json
~metadata.json
| scripts




Advanced Best Practices in Data Organization

Create a corpus reading module:

- Define which files should be loaded and how
those files should be loaded.

- Store these as parameters iIn README.
- Regex for file names / formats [\w\ . txt+]
- Can include a filter list for restricting files

1mport json

def project reader(self):
return json.load(self.open(“README”))



Feature Extraction

Bag of Words representation vectorizes through word counts
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Feature Extraction

Bag of Words representation vectorizes through word counts

Amanda didn’t start the fire
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Feature Extraction

One Hot Encoding and TFIDF normalize token frequencies

Baby shark, doo doo doo doo doo doo
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Feature Extraction

Transtorming text data into numeric features

Non-distributed Distributed
One Hot Encoding —mbeddings
Stop word Stop word No need for stop word Stop word
removal? removal removal removal?

Document-level Corpus and document- Context and corpus-level
normalization level normalization normalization

None




Word embeddings capture semantic similarities

Statistical modeling through software (e.qg. SPSS) or programming language (e.q. )
Context
EXperience In , Java or other object-oriented programming languages
Context Context
Proficiency programming in ,Java or C++. !
Context Context
| Object-
Programming o @ oriented
Language ~ " Java
® O(C++




A simplified representation of word vectors

Dimension Dimension
- Reduction > Reduction
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3 = .
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p L Programming o @ oriented
Language ~ Jjava
® OC++
Tokens In corpus Dimensions
(Millions or Billions) (50-300 d)



A simplified representation of word vectors
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Feature Extraction

Transtorming text data into numeric features

Non-distributed

One Hot Encoding

Stop word
removal?

None

Stop word
removal

Document-level Corpus and docu
level normalizat

normalization

No need for stop
removal

Distributed
—mbeddings

word Stop word
removal?

ment- Context and corpus-level

All tokens are equidistant

igh dimensionality, extremely sparse

0N normalization
Distance « token similarity

Lower dimensionality



Document categorization

-Xtracting semantic structure from numeric features

Topic Modeling Document Classification

What are the topics that occur In a
collection of documents?

Which class does document X belong to?

Unsupervised Dimension Reduction Supervised ML Algorithms
(LDA / LSA) Regex (Standard or Artisanal)
—very document 1S a mixture of topics —very document belongs to a single class

The presence or absence of a subset of words
impacts the classification

—very topic 1S a mixture of words
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